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MISSION STATEMENT:

D 5.1 Evaluation of the usability and feasibilitiyaorborne systems in line with relevant
GEO tasks:

» Evaluation how available Airborne and Hyperspedyaitems can be used in an optimal
manner to identify and monitor the various aspetthe mining-related disturbance of
human and natural environment. The emphasis is@employment of highly innovative
“beyond state-of-the-art” lightweight systems, aliliog highly cost effective and flexible
operation.

» |dentification of diagnostic geomorphologic, spattchemical and geophysical
characteristics that can be detected using airbdoyperspectral and geophysical methods.
» Definition of the technical framework for harmonizeost effective monitoring includin
data of different scales (European, national, megjjo This includes consideration of
required ancillary data. Special emphasis will ach on the accuracy requirements of
stakeholder organizations.

©

1. Introduction

The objective of ImpactMin is to develop new meth@hd a corresponding toolset for the
environmental impact monitoring of mining and migrelated activities via airborne and
geophysical remote-sensing methods. In WP5 the asiplis derived from the information
set forth by preceding work packages (hamely WIRd)ley generating a scientific knowledge
pool of methods derived from mineral resource epgilon and exploitation methods,
airborne and EO-based environmental monitoring regles, in-situ sampling/ground-
truthing and adaptation of results and methods foather field of science with a possible
applicability in ImpactMin, as discussed in pre\soyPs.

This report (D5.1) expands on the results of WRahitl WP4.2, dealing with spaceborne
remote sensing and generates its own organic addes/from WP5.1 and WP5.2, with an
emphasis on airborne methods and innovative teabsiqin WP5.1 the environmental
variables associated with mining activities andedttble with airborne remote-sensing and
geophysical data were examined and identified \aitiention given to the assessment of
environmental variables and general observablegh&unore, the WP had outlined certain
sensor properties, advantages/disadvantages, tiongaand approaches. WP5.2 focused on
the generation of a knowledge-pool of successfuboane remote-sensing/geophysical
methods, tools and algorithms. Existing tools anethods for the monitoring of mining
impacts were compiled from the findings of WP4.2] adjusted to airborne approach in
WP5.2. Methods from different areas of environmemenitoring, other than mineral
resources exploitation, were reviewed and, if pmesitranslated for applicability in
monitoring mining impacts. Finally, the proper arsd software, algorithms and procedures
needed to extract useful information from varioasadets, in order to optimize the efficiency
of the analytical procedures, were identified, @ogd and tailored. This report sets up
elementary parameters for the phenomenology obmid remote-sensing/geophysical data
acquisition, processing and evaluation, and roag-toamplementation of new technology
and multiple geospatial data integration. The dvgaal is to carry out successful imaging
and classification of mineral occurrences, miningaa, mine waste within their surrounding
area and ecosystem. Determination of observabldgsisnain contribution of Hyperspectral
Imagery (HSI) and Gamma-Ray Spectrometry (GRS) ttataugh mineral-spectral, but also



vegetative and man-made spectral endmembers pneghint the target areas, but also their
distribution and dispersal of observables on landvater with possible effects to vegetation
and overall ecosystem health.

2. Airborne remote sensing for environmental monitorirg

Primary objective:

Evaluation how available airborne and hyperspectsgstems can be used in an optimal
manner to identify and monitor the various asp@&fthuman and natural environment. The
emphasis is on the employment of highly innovdieyond state-of-the-art” lightweight
systems, allowing highly cost effective and flexdgeration.

Environmental monitoring is a system of observatiestimation and prognosis for the
environment under the influence of natural and mmbgenic factors. This system must be
realized in the frames o&ir monitoring, surface and groundater monitoring, soil
monitoring, andlora andfauna monitoring Remote sensing has enormous potential for this
because it can minimize the intensive sample datle@nd the amount of people needed over
a prolonged period to achieve the required spamal temporal coverage. The case for
supplementing satellite remote sensing with aireomeasurements for environmental
monitoring stems from an inadequate resolutiont(@papectral and temporal) of satellite
data to address observables in a relatively snrall lighly-detailed area. Even with the
advent of new-generation hyperspectral satellitks, spatial resolution and atmospheric
modeling remain obstacles in detecting discretenadiges necessary for successful
monitoring. The role of airborne spectroscopic ddterefore fits the niche between the
regional satellite assessment and ground point-agnp

2.1 Airborne optical sensors

The primary modus of operation for the optical sessevolves around the ability of an
instrument to record the solar energy reflectedearadiated from the surface (Goetz, 1980,
p.680; Taranik, 1988). As the energy in the fornplbtons is reflected or absorbed from the
materials, it is possible to derive certain infotima about the material (shape, texture,
chemical composition). Within the optical sensa thceived energy is transformed into an
electric impulse, which is then recorded as anyaofadigital numbers, ready for processing.
The digital numbers are then converted to brigltnedues. The brightness values become
the carriers of acquired information and can bedus® generate digital images and
subsequently spectral and topographic informati®abine, 1999, p.383; Taranik, 1988).
Clark (1999, p.4) defines the four general pararsetbat describe the capability of a
particular sensor in deriving the information fram observed target:

» Spectral range which shows the values in whiehgilren instrument can “see”, from visible
and near-infrared (VNIR), shortwave-infrared (SWtR}thermal infrared (TIR).

» Spectral bandwidth describes the width of theviddal spectral channel, with narrower
bandwidth being able to discern more subtle antbnear spectral features. As the bandwidth
widens, some of the spectral detail is lost.

» Spectral sampling denotes the wavelength distanteng the spectral bandpass profiles for
each channel in the sensor. In order to resolveeatal feature, there must be at least two
samples close enough to measure the peak and {@tkjons.



« Signal to Noise Ratio (SNR) describes the abdity sensor to measure a given phenomena
with enough precision to record all of the sigrafi¢t details. Some features will require only a
modest SNR, while some will require much higher.

Sabine (1999, p.384) describes the image analysisepses as a stream of recognition of
spatial and spectral patterns in image data thadugin the use of appropriate models
eventually evolves into interpretation of landscapibutes. The landscape attributes are
then explained (through the geologic interpretapvecess) to develop geologic information
pertinent to the geomorphology, lithostratigraphystructure of the area. Ultimately, the
information that can be derived from an image lategl to the characteristics of the pixels
comprising the image — where the group of pixelthwhe similar tonal attributes can be
identified as a particular area of geologic inte{ghowing linear trends, bright areas and so
on). The steps in the analysis and deriving geoldgiowledge from the image can be
summarized as following (Sabine, 1999 p.386): Ramba(Brightness) measurement ->
Groups of Pixels -> Textural/Spectral units -> Lacape attributes -> Geologic Processes ->
Geologic Models.

The reflectance region of electromagnetic spectnasibeen demonstrated to hold permissive
elements for identification of various targets dre tbasis of their particular physical
properties. Hyperspectral imaging consists of qtetite measurements of the spectral
characteristics of materials using a remote sensystem having greater than 60 spectral
bands with a spectral resolution less than 10 nmdywring a contiguous portion of the light
spectrum which defines the chemical compositiontied material through its spectral
signature within the observed range of wavelengWatious molecular vibration, charge and
crystalline structure effects define the charastes that become observables in the given
region of the EM spectrum.

2.2 Airborne radiometric surveys

All rocks and soils are naturally radioactive, @ning varying concentrations of a variety of
elements exhibiting natural decay and emitting etgriof types of radiation (alpha, beta,
gamma) at specific energy levels. Natural gammatspemitted by minerals and other soil
components are a sum of contributions from diffen@dionuclides. At present, only the
gamma-ray radiation has sufficient energy to bel usegeophysical mapping or exploration
and provides a method of measuring concentratibnsdovidual radioactive elements (K, U,
Th) as the foundation for differentiating litholegi and soils by their characteristic
radioactivity-emissive signatures. A gamma spectmgasured in nature therefore yields
information on the actual concentration of nuclideshe material sensed by the detector
system. Most of the field systems used to recotdrahradiation consist of some kind of
scintillation crystal setup coupled to a series milti-channel analyzers (MCA’s).
Scintillation crystals ‘translate” incoming radmai into flashes of light having an intensity
proportional to the energy of the absorbed gamnmaigph The light output of a scintillator is
translated into an electric signal that is storsth@g a MCA. Generally 256 (or 512) channel
spectra are collected and reduced, as recommengdtiebInternational Atomic Energy
Agency, to four standard energy windows: potassiumanium, thorium, and total count
(Figure 2c).

Potassium abundance is measured directly as gaaysaare emitted whetfK decays to
Argon. Uranium and Thorium cannot be measured thjreDaughter nuclides generated
during the decay of parent elements are measurgdaith, and the abundance of parent
elements is inferred. Distinct emission peaks daget with 2°°T| and #“Bi are used to
calculate the concentration of Th and U. Thereftdeand Th are expressed in equivalent
parts per million (eU and eTh) or Bequerel per Kge radionuclide concentration is known



to be specific for given rocks, minerals and stjfges. Each mineral can be characterized by
a radiometric fingerprint, or a concentration ve¢@'K, C***Th, C%) (de Meijer, 1998).
The energy distribution of gamma radiation is rdelspecific; each type of nuclide emits
photons with one or more unique energies that @amneborded using gamma-spectrometer
systems.

Airborne radiometric surveying can also be utilizadassessing overall as well as subtle
observable characteristics of abandoned mine wastéspreliminary ranking of sites with
regard to potential environmental quality impacthie Gamma-ray Spectrometry (GRS)
survey, used in the scope of WP5 can be appliechap possible surface and subsurface
lithology, structure, possible ground water flond&or sources of radioactive decay. Smith et
al. (2000) described application of these techrscateboth regional (e.g. state) and local (e.g.
watershed) scales while overviews of geophysiadirtgjues are provided by Campbell and
Fitterman (2000) and Campbell et al. (1999). Airnsogamma-ray surveys have been applied
to geological studies for more than 40 years, aediading still finding their way into new
applications such as exploration for mineral resesirother than uranium (de Meijer et al.,
1997; Tourliere et al., 2003; Shives et al., 199@madan et al., 2009; Porter et al., 2000;
McAfferty et al., 2009,), environmental impact mining (Coetzee et al., 2009; Martin et
al., 2006; Medusa white paper; Scott et al., 2@@ltanen et al., 2009; Pfitzner et al., 2001,
Winkelmann et al., 2001; Bierwirth and Brodie, 2)0&nd degradation and agricultural
monitoring ( Carrier et al., 2006; Street-2010yaith mapping (Wilfort et al., 2002) .
Bierworth et al. (2005), used airborne gammaray datcombination with Aster imagery to
identify acid sulfate soil hotspots.

GRS provides a direct measurement of the radidgciiv the surface of the earth, with no
significant depth of penetration, but with possipibf inferring information at-depth through
the surface emissions of radioactive decay (e.gass@ hydrothermal alteration of the
mineralized host rock manifested by the high K ¢sun GRS). The surface assessment of
the observable characteristic allows fairly rel@buantification of the measured radioactive
element emissions to mapped bedrock and overdikislirgeology, and/or any alteration-
assemblages associated with possible mineral depmsimine-waste introduction. All rocks,
and the materials derived from them are radioactoamtaining detectable amounts of a
variety of radioactive elements. A gamma-ray smpacater has the ability to accurately
differentiate the recorded gamma rays by their getspe energies and bin the spectral
information to particular regions in a similar apach to that of a reflectance spectrometer.
Airborne methods provide valuable, systematic cagerof large areas and are best-suited for
evaluating targets of possible environmental impaath as mine-lands and/or industrial
accidents (e.g. Rangelov et al., 1993; Grasty, 1993

2.3 Discussion on Novel Airborne Systems/ Technology

Recent advances in technology (better detector rraBteand processing methods have
allowed for marked improvements in data quality.eThse of smart automated gain
stabilization and high quality standard spectrdbath HSI/GRS arenas, results in an even
larger improvement.

2.3.1 Gamma-ray spectrometers

The recent and historical (1960-70s) acquisitionl @malysis of GRS data was mainly
directed towards deconvolving information from thianed potassium (K), uranium (U) and
thorium (Th) channels and their resulting ratiokeTtoncept of the detector was primarily
designed towards counting pulses of incoming raiaderived from the decay process of the
U, K, Th gamma rays within the large crystal (dgudlal crystal). If a particular ray is



absorbed within the crystal, it would emit a putgdight (scintillation), proportional to the
energy level of the incident ray.

The full spectrum analysis in GRS sector is a naglance resulting from the development
of a new detector elemen, a Csl scintillating alstvhich has proven to be a valid
replacement, and possibly even an improvementassical 4x4L Nal-based system, used
in past. The use of a single scintillation cryseduces the system complexity and allows for
advanced interpolation and analysis techniques as¢he ones used with HSI data. To arrive
at a small system, a“full spectrum” analysis ismbmed with a high crystal type (Csl instead
of Nal) and measures all of the incoming gamma oags a particular spectral range, similar
to the way a hyperspectral instrument would measumefelected solar radiation. Fully
automated software based stabilization and MonteloCaimulation-based calibration
complete the development. Full Spectrum AnalysiSAFincorporates virtually all of the
data present in the measured gamma spectrum afjoian the deconvolving of
concentrations of the radionuclides that led tortteasured spectrum (Hendriks et al., 2001).
These recent developments in both the detectontdotpy and the data analysis allow us to
reduce an airborne system to a size and weighofiets up possibilities for operation on an
ultralight aircraft or a helicopter drone. Succésfperiments for monitoring®>’Cs-fallout
from the Chernobyl accident with a small Csl-dedeainounted in an unmanned aerial
vehicle were performed by Pdéllanen et al. (2008).

2.3.2 Hyperspectral sensors

The new generation of airborne sensors operatinigen/IS/NIR-SWIR range of 380 - 2500
nm, provides superior spectral and spatial imagwith negligible sub-pixel distortions
(smile, keystone). The advanced sensor design masxeellent spatial resolution without
compromising the imaging speed and signal-to-n@te. The advanced performance from a
light weight sensor allows integration into varietiyairborne platforms, some of them even
unmanned. The compact new technology is partigulddsigned to increase the spatial
resolution of push-broom hyperspectral imagers,vaouks with detector arrays up to 24 mm
wide in the spatial dimension. The design is optadifor operation in harsh conditions, and
provides the option of a user exchangeable foreopti

2.3.3 Optical systems on unmanned aircraft

Smaller size of modern-day sensing systems allbeis integration into an Unmanned Aerial
Vessel (UAV) / Unmanned Aircraft System (UAS) desd for aerial survey mapping. A
relatively inexpensive, but high-resolution optiqaisible-near IR) system is capable of
acquiring imagery in 5-9cm resolution, from 200noad-ground level (AGL), allowing for
identification of objects/surfaces in high resaaticoupled with the ability to derive digital
surface models (DSM) by an automated dense-steagching techniques at 5-10cm RMS.
Aerial mapping and survey using small electricalwpred aircraft is economic and
environmentally friendly when compared to convemtilosurveys. Smaller aircraft platforms,
some of which are used in the scope of this prgggt Kristineberg, Sweden), are small and
lightweight, and generally considered to pose makito-very low danger to people/objects
on the ground or manned aircraft, thus allowingoperation without restrictions and flight
clearance procedures requires for regular aerippmg operations.

2.4 Commercial applications of spectral imagery

Remotely sensed spectroscopy is becoming an afiterdaapid and efficient manner in which
to characterize a variety of important materialst thccur on the earth's surface. Numerous



studies described in this report have been caoigdo understand the meaning of infrared

reflectance spectra and the implication of changespectra with respect to changes that

occur within and between those materials, eitheeattion to natural processes or as a result
of human interference. The validity of spectroscapthus well proven, and should not need

any additional explanation.

2.4.1 Historical development

The first imaging spectrometer was the NASA Scagrimaging Spectroradiometer (SIS)
built in the late 1970's, which provided image dee32 contiguous spectral bands, each
15nm wide, in the spectral range of 0.43-0.8u. &aker, an important development was the
airborne spectroradiometer developed by the Geogdly&nvironment Research (GER)
Company. It operated in one-dimensional profilingd®a to acquire data in 576 narrow
channels in the spectral range of 0.4-2.5u4 A maglvancement in instrumentation was the
design of imaging systems with dispersing optidsictv allowed acquisition of spectral data
in a large number of discrete contiguous spectf@noels. The Airborne Imaging
Spectrometer (AIS) was designed and built at th&SNAlet Propulsary Laboratory (JPL) in
the early 1980's. It acquired image data in 12&8tspkebands and a 32-pixel swath. The next
important development was the advanced Visibledhefl Imaging Spectrometer (AVIRIS),
which became operational in 1986. This sensor lee Blown over numerous test-sites
worldwide, and is still operational. Aviris images224 contiguous channels in the spectral
range of 0.4-2.51, with a spectral bandwidth ofiggmn.

2.4.2 Commercialization

A number of private organizations have since retzmgh the immense potential of
hyperspectral imaging. Among the more important m@mcial airborne imaging
spectrometers were CASI/SASI, GERIS, HYDICE, HYMARyperSpecTIR, SFSI and
SPECIM instruments (AISA, Eagle, Hawk etc.). In tlast 10-15 years the commercial
exploitation of airborne hyperspectral imaging Hasind its way into many fields of
application, such as forestry and vegetation monigo precision farming, environmental
monitoring, identification of oil-impacted surfagedand use management, mineral
exploration, hazardous waste remediation and g$b.for

Because of the high cost and complexity of theaaire systems in the past, most of the
airborne hyper spectral surveying took place in dloenain of scientific or governmental
organisations, With the ongoing perfection and atumisation of the sensors and cameras as
well as processing technology their operation amgleyment rapidly becomes much less
complicated and cheaper, hence better cost-beratittns, and as a result routine use of
commercial airborne hyper spectral surveying iseetgd to take off significantly in the next
decade. There is currently a significant growtltammercial applications of this technology
and hence in the number of service providers (dyyista, Spectir, ITRES etc.). Smaller
hyperspectral camera systems allows for usage @lbarsmaller aircraft that can be rented
locally, implying less complex logistics and lowasts, and miniaturization has made such
progress that the first hyper spectral systemsddatoe flown on a UAV are available on the
market. An important implication of this processtlat it is becoming feasible to survey
relatively small areas that were previously, frarcost perspective, impossible to fly because
mobilization costs were prohibitively high. The eat developments have thus brought the
hyperspectral surveying into a realm of an effitiand relatively low cost technology for
mapping complete areas. Table 1 outlines some @fcttmmercial or semi-commercial
systems currently available for tasking and datalpase in the VNIR-SWIR spectral region.



Sensor Country| Age Bands | Region(p) | GIFOV (m) Config.
AVIRIS USA 224 0.4-2.5 3.6 - 20 Single
Hymap Australia 128 0.45-2.45 2-5 Single
CASI/SASI Canada 288+100 0.38-2.45 1-4 Dual
SpeciM Finland >500 0.4-2.45 0.4-3 Dual
HST-3 USA 230 0.43-2.55 05-4 Single
Notes:

GIFOV — Ground Instantaneous Field of View (grouesblution)

Config. — Instrument configuration whether is iagh¢ focal panel or two instruments

AVIRIS/HST-3 are under U.S. government control, mtnetimes participate in commercial applications

Table 1- Summarized airborne sensors and their charattsyi

2.4.3 Considerations

The diameter of the surface covered by a spectealsnrement varies between a few mm till
a few m. depending on the type of spectrometerfaredoptics used. However, the problem
with the earth's surface is that it is extremeljomogeneous, and that processes that take
place at surface often result in very diffuse tiamss from one surface class to another. Often
observed are the mixtures of materials and thequtigms of materials in those mixtures can
change, but also the spectral properties of thiwishaal components.

Hence the difficult questions remain: What is tleasity of sampling? Where to sample, and
how to treat the space in-between the samples. dEmser the sampling grid, the more
realistic the information, but also the more expenghe survey becomes. The cost of a
spectral analysis lies between 10 and 20 EUR pepkea not including the sample collection.
Sampling at a density of one sample per 10 (assuming more or less homogenous
composition) would hence imply a cost between 10&6d 20,000 EUR per Kinjust for the
analysis.

Obviously the sample density depends on the scdptheo project, because this scope
determines how much surface variation can stilldgarded as "homogenous". In the case of
a point measurement and one sample per*1his would imply that a surface measurement
at about 4 mris representative for a surface of 10*10m. Tewédyi one could seriously
question whether this is a representative measunertiean airborne hyperspectral survey is
considered, the situation is entirely different.pPeding on the flight altitude, the size of a
measurement (pixel) would lie between 0.5 and %1 .25 i - 25 nf) In contrast to the
field measurements, the spectrum for each gridyrelales represent all the materials within
the grid-cell, which can a great advantage, esfhgamsmall areas where there is significant
surface variability.

The cost of hyperspectral survey depends on thtudst (i.e: resolution) and flightline
spacing, but usually varies between 250 and 500 geHXnft for large areas (depending on
the location and size of the area). The size ofstirgey area is a very important parameter,
because of the relatively high cost of mobilizatioWhen large areas are flown, the
mobilization costs are spread over a wider ared,hemce lower the overall survey price per
Km?. One can imagine that in the case of small aréaserest, the mobilization costs could
be prohibitively high, and this is exactly one bétgoals addressed in this project: by using
smaller, locally available aircraft, the mobilizati cost can be reduced, and the cost of a
survey would be much closer to the actual coslgifitfacquisition.
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3. Potential of airborne remote sensing for mineral reources
exploitation monitoring

Primary objective:
Identification of diagnostic geomorphologic, speattr chemical and geophysical
characteristics that can be detected using airbdmerspectral and geophysical methods.

Mining operations have a severe environmental impatich can be monitored using
extensive, labour-intensive and costly ground bdieddl observations. However, based on the
positive results found in literature on the monitgrof the environment with airborne remote
sensing and geophysical data, significant potefigsl in the application of these data to
monitor the environmental impacts caused by minapgrations. In 83.1, environmental
variables, soil and surface variables associateld mining activities and detectable using
airborne hyperspectral and geophysical data, amemsuwized. The following section, 83.2,
gives an overview of the potential of airborne hgpectral and geophysical data for the
assessment of different environmental variablesa@ated with mining. In the last section of
this chapter, §83.3, limitations and possibilitiadyantages and disadvantages, are reviewed.

3.1 Environmental variables associated with mining activities

The potential environmental effects associated withmant or abandoned mines are a
complex nexus of chemical and physical procesdes.overview of available information in
this report offers current state of knowledge oa finysical and biogeochemical processes
playing role in the mobilization, transport, reaatiand dispersal of potentially hazardous
elements/effects in the surrounding habitat. Theec research in the matter (e.g. USGS
circular 1328) highlights the importance of a) gent sources of contaminants b) pathways
that facilitate transport from the sources c) psses that control the interaction of the
elements in the environment. Figure 1 gives anweer of a number of environmental
variables and sensors best fitted to monitor thimbkes.
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Figure 1 — Logic path for implementation of airborne hygerstral imagery with other
remote sensing assets.

Based on a thorough literature study on the enmemtal impact of mining operations, the
following variables were selected from Figure lofseing of “major importance” to the
airborne campaign and monitoring of the mine-landkin the ImpactMin project:

Air monitoring:
- Atmospheric gasses and aerosol
- Underground fire venting/smoke

Water monitoring:
- Water quality

- Water turbidity and sediment load
- Heavy metal contamination

- Aquatic flora identification

- Surface drainage

12



Soil and mineral monitoring:
Soil composition:

Vegetation monitoring
Plant health

Land use/ Land cover

Minerals : iron, clay, sulfate, carbonate
Subsurface fracture systems

Vegetation species identification

Except from the subsurface fraction systems, foiclwhgeophysical methods are more
appropriate, all other selected variables allow maooimg with hyperspectral data (<5m). This,
because all variables can be associated with olislelsy having specific absorption
characteristics (see Table 2, Figure 2a).

Observable | Observable chars. |  Association

Soil and mineral monitoring

Iron minerals| 350-700nm Alteration, surface cap, rust, wag

(oxide/hydroxide) absorptions rock

Sulfate minerals 1700nm, 2100nm Alteration, weatlgger  acid
drainage

Clay minerals 2200nm Alteration, rock units, untgadlope
Hydrocarbons 1200, 1700, 2300+nm  Pollution, resadamp, venting

Carbonates 2300nm Buffering, host rock, remediatior
Materials 500-700, 1500-1700 Waste, hazardous zowe#tural

ftrs.

Discrete anomalies

Unusual absorption

5 Explosmdiacts, burning

Vegetation monitoring

Vegetation stress

500-900, 2200nm

Pollution, waépletion, geology

Chlorophyll

300-900nm

Pollution, nutrient load

Air Monitoring

Gas emissions

760, 1500, 2100nm

Pollution, fumardderning

Atmosphere and aerosol

1200-1400nm
1900nm

160

-Rayleigh scattering of dust.

380nm, 600-100((){@1515 and water vapour absorptions,

Water Monitoring

Water turbidity and load 380-420nm, 553@Rollution, runoff
800nm
Sub aquatic vegetation 300-900nm Pollution, nutriead

Table 2— Some of the observables detectable with refheetapectroscopy
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Observable Observable chars. Association

Depleted uranium U238 elevated value Military @piens, waste dumping
Phosphates U238, K Deposition env., fertilizer wast
Potassium Elevated K Alteration, rock units

Thorium Elev Th., reduced U Rock units

Hydrocarbons Elevated U, Th Contact, precipitation
Radioactivity Elevated Total count| Radon gas, radive waste

Table 3— Some of the observable features detectablegaitiima-ray spectroscopy

Related variables for environmental impact (bel@sg linked to the table of observables
(above) and the logic-path (Figure 1) to estabtisbct (1) or indirect association (2)with
mining activities:

Air monitoring:
- Dust: Iron oxide (1), Atmosphere and aerosol (1)
- Fine particles: Emissions (1), Atmosphere and at(@3
- Gas emissions — pollution, burning: Emissions (2)

Water monitoring:
- Acid mine drainage: Iron minerals (1), sulfate @ay minerals (2)
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- Sediment yield and metal contamination: Water tlityi(1), vegetation stress (2)
- Water depletion: Vegetation stress (2), sub-aquatietation (2)

- Water turbidity: Pollution/run-off (1), nutrientdal (2), sub-aquatic vegetation (2)
- Heavy metal: sulfate minerals (2), iron minerals (1

Soil and mineral monitoring:
- Minerals: Iron, clay, sulfate, carbonate, materjals

- Acid mine drainage: Iron, sulfate, clay mineraly (1
- Ferruginous materials: Iron (1)

- Heavy metals: Sulfate minerals, iron (2)

- Changes in soil moisture : Water, vegetation stf2ss

Vegetation monitoring:
- Land use and land cover change: Chlorophyll, matersub-aquatic vegetation (1)

- Vegetation stress: Chlorophyll (1), water, aerosolfate minerals (2)

3.2 Compilation of existing methods for the monitoring of mining impacts

Below is the brief discussion on the existing infiation and literature review of the
measured, investigated and inferred potential ioane remote sensing in assessing different
environmental variables, soil and surfaces parametesociated with mining activities. The
literature review is based on the information penit to the named area of interest for
airborne operations (primarily the target site addvar Valley in Bosnia and Herzegovina).

3.2.1 Air monitoring

Consult 83.2.1.c and 83.3.1c in ImpactMin D4.1 doeunt regarding air monitoring because
the airborne sensors are deployed from the lowgudés (<1000m AGL) and lack regional
extent to obtain meaningful and pertinent informatiOnly profound effects, tactical in scope
(e.g. smoke, heavy dust, fumarole emissions) cdedsmbly detected using HSI methodology
in the reflected portion of the spectrum, while GR®ot suited for the task. For smoke/dust
detection on a tactical-scale, Clark and other®32@liscussed the mapping of dust hazard
following World Trade Center attack (Figure 3). ingar study by Swayze and others (2003)
and the follow-up study on mapping asbestos-bearnimgrals (Swayze et al., 2009) focused
upon asbestos and fibrous dusts related to mimmigeral processing, or mineral products,
with secondary study of potential health implicasaf other earth materials such as: metal-
bearing mine wastes, mill tailings, and smelterssions; dusts from dry lake beds; soils;
volcanic ash; coal and coal fly ash; and dusts flantding collapse. The studies identified
many topics for a spectrum of earth materials wiseitestantial further research is needed to
address increasing societal concerns. Spinetti. €2@03, 2008) obtained a volcanic plume
CO, concentration map using airborne MIVIS and AVIRMSperspectral data. Salvador
(2008) showed that it is possible to detect weak signatures in hyperspectral imagery for
both airborne and spaceborne sensors, using they meweloped wavelet packet subspace
method.
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3.2.2 Water monitoring

During the water passage through new and/or ole&ergiound and mine wastes results in the
mine water, which constitutes an integral parthe hydrologic cycle and frequently carry
suspended solids and dissolved pollutants, sutteasy metals. Flowing along the hydraulic
gradient through different groundwater and surfaeger pathways, the mine water affects
and pollute other environmental water settings gdwater, streams, lakes, coastal and
marine water) across municipal, regional and natidrorders. As a result of this, some of
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these impacts can persist for centuries after rologure. Classical practice in dealing with
industrial pollution discharges may not be fullyted to regulation of the impacts of mining

on the water environment.

Management of new and old (closed or abandonedesnmust deal with mine water

management in the integral part of general watemagement regulated through the Water
Framework Directive (WFD). This is a unified framak for management of Europe’s

surface and groundwater, which includes the paliuby mine waters. WFD considers water
management in a coordinated way within the bastemmanagement tasks of:

- Formulating water management plans and action progr

- Evaluating individual permit applications regardingw mining and mine waste
disposal projects

- Remediation decisions for contaminated land

All of these different mining pollution issues (waswater, soil) have one common question:
is there a need for and are there any technologic&asible and socio-economically
sustainable measures to be taken (including enumemtal monitoring) for achieving long-
term compliance with environmental standards?

Water pollution caused by mine water and mine wadteany given water recipient
downstream is determined by both the source emmisaiwd the subsequent hydrological
transport and hydro geochemical retention/attennatif emitted pollutants along various
downstream water and solute flow pathways. Theslewaegys comprise complex structure
through soil water, groundwater and surface wagstesns. This further results in a coupled
monitoring and prediction of water flow and pollotaransport with attenuation processes on
a catchment scale. Since monitoring program forimgirenvironmental impacts plays a
crucial role in future water resources managemeamndd¢r WFD) and sustainable mining, the
new innovative monitoring techniques must be cdlsefanalyzed and proposed to decision
makers for future environmental compliance of mgnactivities.

Extensive literature coverage and detailed synshefsvarious mining impacts examples can
be found in Younger et al. (2002a,b) or Lottermd2003 and 2003b) together with ERMITE
(Environmental Regulation of Mine waters in the &agan Union) Consortium (2004) FP5
project which clearly addressed key mine water rgament problems specifically at the
catchment scale. There are three general divisionaddressing the impact to water
environment:

a. Impact from mining activities
Mining activities inevitably disrupt preexisting dinplogical pathways within the
geologic strata. All types of mining have the paiarto directly disrupt groundwater
flow (Booth, 2002), which in turn can affect sudawaters that are in hydraulic
continuity with the affected groundwater system.niost cases the impacts on the
natural water systems arising from the mining aii¢is tend to be relatively localized
and limited compared to other mining related impagich as those associated with
dewatering.
Mine dewatering is essential in mining operatian®lder to secure access for miners
and mining machinery to the mineral reserves, ancrtsure safety of personnel
working in mining areas. Dewatering environmentabacts are numerous:

- Disposal of the pumped (usually saline) water
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- Depression of water table around the dewatered @6menger et al. 2002)

- Decreased flows in streams, wetlands, and lakéstban hydraulic continuity
- Lowering of the water table in the vicinity of wasupply or irrigation wells.

- Land subsidence usually due to compaction of fireergd sediments

- Surface water or groundwater pollution

Many of these impacts can be anticipated beforg tfa@pen and mining companies
should be able to mitigate them and provide deiecbased monitoring. Mining
impact from mines which went through the closurecpss result from the seepage of
contaminated leachate from waste rock piles arithgaidams is a significant cause of
surface and groundwater pollution in many miningaat The form, although possible
during mine operation, can persist long after siperation cease. In many cases,
previously created mine waste deposits have sugdeefun to generate acidic
leachates many years after they have been lefteunuhd.

The Impact coming from abandoned mines can evdptudabd to renewed
environmental impacts, following the recovery obgndwater levels (a process called
“rebound”) to the preexisting base level of dramadhe rebound process in
subsurface mines commonly leads to a marked dedéion in the quality of mine
water (Wolkersdorfer 1996: Younger, 2000). In caésurface mines, water quality
can deteriorate when backfield materials are illytisaturated after restoration. After
completion of mine water recovery, the overspiluofreated waters after flooding can
happen.

Very often the mine sites give a rise to heavy ilogsl of suspended sediments in
receiving watercourses resulting in increased titppand decreased light penetration.
This directly affects the primary producers in aguacosystems like different algae
by inhibition of photosynthesis, and in turn redutiee food availability for the macro
invertebrate community in surface waters and alfeesfish population that feeds on
them (MacDonald et al. 1991). The use of hyperspksénsors at different scales can
provide innovative way of properly monitoring suichportant environmental impact
of surface waters.

. Suspended sediments

Very often the mine sites give a rise to heavy ilogsl of suspended sediments in
receiving watercourses resulting in increased tlitppand decreased light penetration.
This directly affects the primary producers in aguacosystems like different algae
by inhibition of photosynthesis, and in turn reduitiee food availability for the macro
invertebrate community in surface waters and alfeesfish population that feeds on
them (Newcombe and MacDonald, 1991). The use ofeisgectral sensors at
different scales can provide innovative way of @y monitoring such important
environmental impact of surface waters. At presér, results of spectroscopy are
limited to measuring those substances or conditibasinfluence and change optical
and/or thermal characteristics of the surface wpteperties. Suspended sediments,
chlorophylls, dissolved organic matter DOM, tempar@, and oil are water quality
indicators that can change the spectral and thgomalerties of surface waters and are
most readily measured by remote sensing technigBabstances (i.e. nutrients,
metals) that do not change the optical and/or theaharacteristics of surface waters
can only be inferred by measuring surrogate pragge(t.e., chlorophylls) which may
have responded to an input of chemicals. Suddutl. €2005) and Shafique et al.
(2002) collected and analyzed hyperspectral waieatance data with airborne and
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ground-based sensing systems for mapping and watdity modelling. Deronde et
al.(2006) focused on the use of airborne hypersgleitchagery to map the sediment
characteristics of a tidal sandbank in the Weshaige. Sterckx et al. (2007) produced
suspended sediment maps which described sucdgsstoe known variation of
sediment behaviour in the Lower Sea Scheldt ardacantribute to the improvement
of our knowledge of spatial and temporal sedimesitridution in this complex river
system. Heavy metal - sulfate pollution

Recently there are many examples of pollution oaged by mine waters. For
example, the Tinto-Odiel river basin (Huelva, Soudpain) generate sulphates
pollution discharged to the Sea to be estimatedlL@hmillion tons per year and
additional 20 000 tons of heavy metal. There ar@ymantire rivers which have
effectively been removed from the inventory of fresater resources due to mine
water pollution (i.e., 1000 km in the UK). In arealere water resources are already
scarce this problem becomes growing issue as theatel changes. The ecological
effects from mining activities can be summarized hydrological impacts like
disruptions of groundwater systems and flow pastewater table affection, alteration
of flow rates, changes in the natural running watenong others. Impacts of mining
on water resources (both groundwater and surfater)v@ccur at various stages of the
mining cycle (ERMITE, 2004):

- The mining process itself

- Mineral processing operations

- Via the dewatering which is undertaken to make ngrpossible

- Seepage of contaminated leachate from waste réek gnd tailings dams
- Through flooding of workings after extraction haased

- Discharge of untreated waters after flooding is plate

Definition of the mine water adopted by the ERMIpEbject is that mine water is
water which is in mined ground (including wastekitailings depositories) and /or
which is now flowing from mined ground into adjaigi waterbodies (such as streams,
wetlands, lakes, aquifers and oceans). Mine waterpart of the water cycle but are
rarely treated as such in regulatory frameworkss Thdespite the fact that short- and
long-term pollution from active and abandoned miisestill one of the most serious
threats to the water environments. Mine water piolfudiffers sufficiently from other
forms of industrial pollution and requires specifiegulatory requirements quite
distinct from those applicable to most other indakprocesses.

Several studies relate to the problem of yestesdayne-related point sources having
become today's diffuse sources within the grounemsail-sediment system, and
continuously loading the surface water system Wwehvy metals (Baresel et al. 2009;
Olli and Destouni, 2008) Advanced models were testethe follow-up studies and
showed some physico-chemical mechanisms for suffiasei subsurface source
accumulation (Malmstrom et al., 2004) and the pmltsi of load abatement success,
minimization of abatement costs, and extra abaténwsts implied by the
uncertainties (Baresel and Destouni, 2007; Baresell. 2006).
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Figure 4 — Example of water turbidity monitoring with hygpectral imagery (courtegy
SpecTIR llc.).

Increases in water quality parameters such as aptgtl a, turbidity, total suspended
solids (TSS), and nutrients are symptomatic of agltic conditions (Figure 4).

Concentrations of these parameters can providghhsin the extent of eutrophication
and the potential impact on aquatic biota and dverater quality. The hyperspectral

scanners are very sensitive to aquatic chloropiegponse at a wavelength of 700 nm,
and can detect a very low density of chlorophyllwater (e.g. Jupp et al. 1994). In
addition, decrease of water clarity can also be padpby observing the peak water
transmittance around 400-500nm thus determiningativibad of suspended sediment.
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As such, by acquiring imagery over the entire waiady, it would be advantageous to
resource manager to be able to detect eutrophiditcmms using the system as a whole
without relying on field measurements.

c. Mine-water Environmental Monitoring

To obtain the reliable measurements of mine watdrtgydro-geochemistry is prerequisite
for environmental impact assessment (EIA) and lierdesign of mine water remediation
facilities. The importance of collecting synchrosomeasurements of flow and water
quality can never be overemphasized. This is becthss ecological impact assessment
and future decisions on mining prospective are mussfully based on contaminant
loadings rather than simple concentrations. Loagleng calculated by multiplying flows
[L%T] with concentration [M/E] yielding loading in units [M/T]. Importance of &ding
can be seen from the conclusion that low conceobtstof pollutants at high flow
conditions can be just as damaging ecologicallyiigh concentrations under low flow
conditions.

Beside the classical physical flow measurementsrétoer tests offer a means of deducing
hydrological subsurface flow paths. The applicatbtracer testing can only been used to
directly quantify flows between two points on tleer® watercourse. In a complex mined
systems these flow paths are not known and tra&sting is used to detect flow paths.
Tracer test are most commonly applied in relatomiine water systems to indentify
surface-subsurface flow pathways and they can ibeedt in development of precautions
against dangerous inrushes to working mines, tduata feasibility of backfill, mine
subsidence investigations, and design of treatmergmedial strategies for polluted mine
waters.

3.2.3 Soil and mineral monitoring

An important element of environmental monitorindamound former and current mining
operations is mineral mapping. The use of Hypertsakeitnagery (HSI) for mineral mapping
and identification is becoming more accepted, follg almost two-decades of work over
mineralogical sites of interest such as Cuprite ¥irginia City, Nevada (Swayze, 1997,
Kruse,1988; Kruse, 1999) and work by the USGS saetdboratory (Clark et al., 2003;
Rockwel et al., 2000). Taranik and others (200A)ehdefined the elements of the natural
background (landscape surface cover composed aotidated rocks, unconsolidated rock
weathering products, soils, coatings on rock maltgri vegetation, water, materials
constructed by humans, mixtures, anthropogenieggasdicative of industrial processes)
using various HSI sensors and methods.

The alteration minerals targeted for detection wWiylperspectral airborne sensors minerals
have abundant spectral absorption features thraughe visible/near-infrared (VNIR, 0.4-
1.0 um) and short-wave infrared (SWIR, 1.0-2um) wavelength ranges (Hunt, 1980, p.35).
These phenomena result from the interaction ofttreleagnetic (EM) energy with the atoms
and molecules which comprise the minerals (Hook atiters, 1999 p.59). Many iron
minerals have subtle spectral features in the @.8.9 um range caused by the electronic
processes of Fe-ions. Charge transfer phenomersa& siitong absorption in iron minerals at
wavelengths smaller than 0fm (Hunt, 1980, p. 32; Clark, 1999, p.16). The mater
containing hydroxyl (OH) group have characterisgpectral absorption features in the 2.1 to
2.4 um wavelength range, which are caused by the vdmatiprocesses in the crystal lattice;
in this case stretching of the hydroxyl (OH) ionlg/®, 1999, p.27; Hunt, 1980, p.33) in
combination with metal-OH bands, which vary (FigGje
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Combination of remote sensing methods with fieldugd-truthing is already showing signs
of promise in discerning natural resources at tiraerous localities in the world (e.g. Bedell,
2004). Combined insight into the soil mineralogyallwing geologists to explore the new
sites of potential interest (shown as anomalouasaom remote sensing imagery) and also
work in assaying and localizing the exact areamwferalization. The analysis of multiple
high-resolution datasets, including hyperspectnahgery and ground-based spectroscopic
surveys can confirm the presence of hydrothermtdratlon aureoles (associated with
epithermal precious metal deposits), but also s#mgnsurface factors which may be
associated with petroleum basin formation. The iptess case studies have shown that by
understanding the mineralogical profile of the &trgrea, one can significantly economize the
exploration effort.

Sources of spectral absorptions in minerals:
» Crystal field effects

» Charge transfer

» Crystalline color center

» Conduction band

» Vibrational stretching
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Figure 5 — Absorptive regions and cause of absorpjion
for certain minerals (adapted and modified from ghe
original figure by Hunt, 1980).

23



IMPACTMIN ContractNe: 244166

2.5m GSD ProSpecTIR VS data registered to DOQ and 10m DTED

Weathering Hydrothermal Alteration

NH4_alunite
[ Kaolinite 1= group RLCE
[ it + Feox B Havoysite

3.02 km

llite +Goethite [ pickie

Bl coetni [ suddingtonite +Alunite

Bl Rozc. vesan [[7] Buddigtonte

D Jarosite - Kaolinite 2% group
Bl onmoriionite
B ~unite

Figure 6 — Example of hyperspectral mineral mapping in @apMNevada (Smailbegovig
2006).

The intimate mixtures (Figure 7) of minerals in gwls give the particular characteristic to
soil types. The underlying mineralogy and structwiten determine the observable
characteristic of the soil (e.g. color, texture).the particular case of Southern Dinarides
(Herzegovina, Dalmatia), the red color of “terr@&sa’ soils is a direct effect of its particular
complex relationship of iron oxide mineralogy (e8inger et al., 1998; Boero and

Schwertmann, 1989; Durn et al., 2001). Previouglietu have utilized XRD, ICP and

elements of spectroscopy to discern the underlymigeralogy of soil composition. The

common analysis methods are usually laboratory:gite and require detailed and rigorous
sample preparation, opening up a need for quickitincharacterization of the soils and its
content. Several authors (e.g. Goldshleger, dl.e004) have explored the opportunity of
soil reflectance mapping for the possibility of @ely sensed soil crust-related properties
such as water infiltration. They have concluded tméneral constituents of soils can be
detected with the use of reflectance spectroscapy @n be used to predict the soall
characteristics and behaviour.
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With particular attention to the former mine lanai®e reports prepared in the course of
MINEO program (Assessing and monitoring the envimental impact of mining activities in
Europe using advanced Earth Obsrervations techs)gne2002, with hyperspectral data
collected to monitor lithology, suspended matteilirtg mapping, vegetation stress. The
reports outlined the strategies for mineral mappintpe alpine environment and determining
permissible lithologies for re-vegetation effonsineralogical/chemical dispersion of waste
material in the acid mine drainage in the Mediteean environment and dispersal/mapping
of mine-waste tailings in the sub-arctic environingee collated MINEO 2000 and 2002
reports on Contamination/impact mapping and modglifhe findings of the MINEO project
present a starting point for the subsequent imphtaten of ImpactMin airborne campaign
goals and expansion of already established hypersp@bservation strategies with higher
resolution, horizontally-integrated remote sensipgroach.
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a. Mercury pollution

The method builds upon a regional space-bornelisatéata to identify the areas of
likely mineral occurrence and then task an airbdmpeerspectral sensor to evaluate
those areas for possible anomalies. Mercury becoda®gerous to ecosystems
through a two-step transformation to the most tcnd bioaccumulative form of
mercury, methylmercury (MeHg). Elemental mercury thre atmosphere and in
watershed runoff is first oxidized by complex orgaand inorganic reactions into its
reactive, water-soluble form (Hg2+). Only reactiveercury can undergo
“methylation,” the second set of reactions necgssarform methylmercury from
elemental mercury. Methylation is a microbial pexeontrolled by sulfate-reducing
bacteria and a handful of other chemical and enunental factors. It is only once
mercury is methylated that it enters the ecosysteaveling up the food chain to
humans through the consumption of affected fishdi®s show (Wu et al., 2005) that
mercury absorption into soils is heavily dependedtite soil mineralogy and local
environmental factors. The researchers have demnabedt that high-resolution,
hyperspectral imaging is sufficient in identifyisgil types and minerals (clay and iron
minerals) which have close relationship with meycibsorption. Hence being able to
positively identify the areas with highest affinifpr mercury concentration can
delineate trouble-prone areas and limit the lewldhuman interaction (e.g. limit
agricultural production in such areas).

b. Radionuclides

Remote sensing of radionuclides and occurrenceadiénuclides in association with
other elements (e.g. evaporites, hydrocarbonsnargadiments) with remote sensing
spectroscopy is a relatively novel idea and yiepssibilites worth exploring,
especially with regards to the use of GRS meth8dseral studies, carried out in the
abandoned uranium mines in Australia (e.g. Martimle 2006), phosphate/gypsum
production areas (Haridasan et al., 2001), sedsn@ran Wijngaarden, 2002) and
naturally occurring regions (Thinova et al., 200&ve demonstrated that GRS is
capable of identifying the distribution and spectsagnature contributions of
individual radionuclides on the surface as wellimsaquatic environment. Kluson
(2010) states that spectrometric data provide naly aualitative information
(identification of radionuclides by the correspargipeak positions), but also provide
guantitative information (photon flux energy dibtrtion at the point of measurement).
It is notable that coal and phosphate mining anea® been exhibiting elevated levels
of radionuclides, particularly in Eastern Europel dormer Yugoslavia (e.g. Ivan et
al., 1990, Barisic et a., 1992). Identifying pbésiradionuclide anomalies associated
with post mining areas can therefore offer an @oltkil validation element and
assessment tool for both natural and anthropogadiation assessment.
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Figure 8 — Example of radiometric data use in charactédmaf radionuclide occurrences

c. Acid mine drainage

The acid mine drainage is a recurring problem imexous former mine lands and has
been a subject of numerous studies with muiltispéand hyperspectral remote
sensing. The most notable efforts were carriedasutn part of USGS and NASA

investigation of the abandoned mine lands (e.g.y3wat al., 1998; Hauff et al. 2000,
Peters et al., 2000; Swayze et al. 2008) and thsesuent MINEO project in Europe

(2002). The problem is caused by rapid oxidatioth evaporation of sulfides on mine
waste tailings resulting in occurrences of irorfatigl minerals (e.g. jarosite). The use
of hyperspectral imagery had allowed generationewvironmental baselines and
evidence for predicting contaminant concentratiod acid drainage on the variety of
surfaces (Mars and Crowley, 2003; Ong et al, 20Ri&za et. al, 2008;). The

hyperspectral data can be used to effectively rhapdistribution and the oxidation

stage of the various sulfide-bearing waste produwtsnly through the distribution of

jarosite, but also additional secondary minerafggsstive of weathering phenomena
(e.g. Farrand and Harsanyi, 1995; Crowley et 8032
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Figure 9 — Acid mine drainage identified through processidpyperspectral data (MINEC

2002)
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3.2.4 Vegetation monitoring

a. Ecosystem health

Remote sensing spectroscopy is an effective taadynoptic monitoring of ecosystem
health. Even limited spectral information or coggranay be considered as useful aids
in the design or improvement of point sampling paogs, often through highlighting
the best locations and timing for other types ahpglng and/or monitoring. The
strength of remote sensing techniques lies in thleility to provide both spatial and
temporal views of surface water quality, atmosphand or vegetation parameters that
are typically not possible from in situ measurerserithe high-resolution remote
spectroscopy allows for monitoring of the landscapean effective and efficient
manner by identifying areas with parameters of eamcThese quality parameters,
often, can be quantified using remote sensing igaes allowing management plans
to be formulated to reduce movement of substanmoes watersheds to water bodies
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or containment zones beyond containment thus radube effects of the pollutant on
water quality and/or complete ecosystem (e.g. &igeis stress and health, food
sources etc.).

Green / Healthy
Jeffrey Pine

b. Vegetation stress

A number of recent studies have indicated the adgms of using discrete
narrowband data from specific portions of the speot rather than broadband data, to
obtain the most sensitive quantitative or qualainformation on crop or vegetation
characteristics (Thenkabail et al., 2002).

Due to the specific changes of pigment concentatend structure characteristics of
plants under stress conditions and the relatedgasaim the plants’ spectral behaviour,
multispectral and hyperspectral band intensitied eatios have been thoroughly
investigated for plant stress detection. In thet,p@&searchers have used reflectance
from individual narrowbands (Mariotti et al., 1996arious ratio indices (Aoki, 1981;

29



80uejoajjoy

Buschmann & Nagel, 1993, Carter, 1994; Gitelsorg8lQ.ichtenthaler et al., 1996;

Lyon et al., 1998), derivatives of reflectance s@e¢Curran et al., 1991; Elvidge and
Chen, 1995) or a combinations of these (Thenkagbail., 1999), principal component
analysis (Clevers, 1989; Asner et al., 2000; Thbaka2002), discriminant analysis

(Thenkabail, 2002), and the linear mixture modelapproach (Elmore et al., 2000;
Mass, 2000). For example, leaf reflectance at Msiavelengths (475, 550, and 660
nm) increased and leaf reflectance at infrared Veangths (850, 1600, and 2200 nm)
decreased as concentrations of the heavy metal€@Cdb, or Zn increased in plants
grown in metal-contaminated soils (Horler et a933).
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The normalized difference vegetation index [(NDWHR-Red)/(NIR+Red)] is
positively correlated to total chlorophyll levels plants. Generally, as plant stress
levels increase, chlorophyll levels tend to deczemsd NDVI values become lower
(Gitelson et al., 2002; Gitelson, 2004).

Mining operations often result in limiting locatidiactors like reduced water and
nutrient supply which inhibit a natural successiblowever, by abandoning these
mine sites, remaining holes fill with ascendingugrdwater and surface water. This in
turn leads to an unexpectedly strong groundwaser and consequently to changes in
species composition and vegetation vitality as w&slto severe damage of reclaimed
forested areas. Therefore, studies investigatingterwastress using airborne
hyperspetctral data can be of great value to thengiindustry. Gotze and Glasser
(2007) tested different parameters of plants sschhlorophyll content (NDVI, RVI,
SAVI), pigment relationship (PRI, PSRI), water camt (MSI, NDWI, RATIO975,
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WBI) and red edge (RVSI) for the detection of pbimgical stress due to water
surplus. All indices used in their study were ectied from hyperspectral Hymap data.

Several other researchers have reported stresgsefifevegetation due to leaking gas
with symptoms including reduced emergence, yellgwahthe leaves or a shift in the
developmental stage (Arthur et al., 1985; Pyseky&eR, 1989; Godwin et al., 1990;
Smith et al, 2004). However, vegetation changetdugas leakage is likely to be slow
in developing; and so hyperspectral remote sensngiore suitable for detecting
prolonged leaks in isolated regions rather thaanasarly warning system. Smith et al.
(2004) detected changes using a hyperspectral repaatiometer with a spectral
resolution of 3 nm, but similar effects have bedentified by Smith et al. (2004)
using an instrument with a spectral resolution aimM and by Zarco-Tejada et al.
(2003) using an instrument with a spectral resotutf 7.3 nm.

Kancheva and Borisova (2008) used the airborne &f#iroach to describe the
elements of spectral response associated with atagetstress while Gotze and
Glasser (2007) have used the advanced algorithnas aarborne HSI data to
characterize the vegetation stress in a ligniteingirarea. Kusomanen (2005) has
demonstrated the ability to correlate spaceborng anborne HSI data to map
contaminated vegetation and soils.

Most of the research carried out in the first decé®90-2000) was by investigators
working with the data have been from academictuisbns and government research
agencies. However, the second decade (2000-20i0)amaincreasing number of
commercial applications of HSI, coupled with theivea of new generation of
commercial HSI-airborne instruments for routine rapiens. Multiple studies of HSI-
potential for the use in mine-waste mapping openathave demonstrated the abilities
of high-resolution, high-fidelity instruments to tdet subtle indicators (e.g. acid-
drainage, vegetation stress), which may yield ingrdrclues towards understanding
the overall impact to the area (e.g. Farrand, 198fff et al., 2005; Vaughan, 2004,
Crosta and Filho, 2005; Smailbegovic, 2005; ChevE€l05; Gotze and Glasser,
2007).

Vegetation has unique spectral characteristics hwinakes hyperspectral imagery so
attractive (e.g. Rock et al., 1988; Roberts e1993; Roberts et al., 1997). Vegetation
has a high absorption in red wavelengths and agtemission in near infrared. This
allows it to be separated from other ground-surfamesrs because non-plant material
absorbs and reflects infrared energy at a differ&tet Differences in foliage, branches
and architecture as well as branch angles, legfeslaad branch surface roughness
cause individual tree species to reflect light eféintly and be individually mapped
(e.g. Ustin et al., 1998). Furthermore, any extestieess factors to the plant itself
(damage, pollution, drought etc.) will result inlatophyll attenuation, which in turn
can be detected by the sensor and thereby helpfideealthy from stressed plants.

3.3 Limitations

There are several challenges in obtaining preceaptely sensed measurements from the
surface. Some of the main obstacles are the atrecspmixtures and vegetative cover. Even
though some of the factors limiting the efficierafyremotely sensed data are beyond control,
proper planning of the data acquisition process aikyv for their mitigation. Additionally,
some factors can be mitigated with ground suppering overflights and field validation to
improve statistical mapping methods.
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3.3.1 Atmospheric Effects

The atmosphere can interfere with the measuremansgveral ways: through scattering,
absorption by the gasses comprising the atmospitdlgough meteorological factors (wind,
moisture etc.). The atmospheric constituents (milpnavater, CO2 and Ozone) can entirely
block the flux of radiation at certain wavelengtlesgving only a couple of “windows” for
remotely sensed measurements. The presence oblei®sesponsible for the scattering in
the visible region by suppressing reflectance fl@mto 0.8um (Zhengming and Li, 1997).
The principal absorbing gasses in the spectraleafdyperspectral datasets are Ozone (0.35
um), Oxygen (0.7um), CO2 (weak 1.56m doublet, 2.01 and 2.08n), Methane (2.3wm)
and water (0.73, 0.83, 0.94, 1.14, 1.38 and {88 (Zhengming and Li, 1997) (Figure 7.3 b).
In addition to general atmospheric chemistry, metiegical factors can seriously degrade the
quality of measurements as well. Clouds can caressaf low reflectance in the VIS-SWIR
data. Rain showers can cause a pattern of straakiseoimagery. Ground moisture usually
introduces heavy waterabsorption features in SV@fercast conditions reduce the amount
of received energy in SWIR (Clark, 1999 p. 6, 63)
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3.3.2 Spectral Mixing

Very few pure surfaces exist at spatial scaleslabla to geologic remote sensing. The
acquired spectral measurements are bound to lbe ifotm of spectral mixture, on a large or
small scale. The measurements reflect the mixedreaif an imaged target by giving a
combined measurement of all of its constituentg. (Boetz et al., 1985). Clark (1999, p. 36)
outlines four main types of mixtures:

» Linear mixture described the situation in which thaterials in the Field of View
(FOV) are optically separated, so there are no ipleliscattering among different
constituents. The resulting signal is the sum ef“fhactional area times the spectrum
of each component.”

« Intimate mixture is a result of different materiélsing in a direct or intimate contact
within the surface (different minerals in a samekrdor example). The resulting
measurement is a “highly-nonlinear combinationeath material’'s unique spectra.
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» Coatings result when one element coats anothemendach coating layer presents a
“scattering-transmitting layer” which may alter tlepectral measurement of the
underlying layer.

* Molecular mixtures describe the interaction of twaterials on a molecular level
(such as water adsorbed onto a mineral), wherentilecular-interdependency of the
components can cause band-shifts in the observéetiaige.g., water content in the
montmorillonite clay mineral).
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3.3.3 Vegetative Cover

In geologic remote sensing, the issue of vegetatwer is important because vegetation
tends to obscure the rock and soil surfaces. SaghlGoetz (1977) emphasizes that the effect
of naturally occurring vegetation on spectral retfice of Earth material is a subject that
deserves attention. The spectral region from 068.8 um is heavily influenced by the
chlorophyll absorption of the green plants (a stasp in reflectance known as the “red
edge.”). Dry vegetation has minor spectral featumeSWIR, related to cellulose and lignin
around 2.2um (Ustin et al., 1998). It has been shown that tage cover has a profound
effect on the spectral features of underlying adi@ent rock materials, particularly in the
realm of hyperspectral remote sensing. When thestaéign component of a mixed pixel
exceeds 20%, it degrades the ability to identiffneomineral end-members, and when in
excess 40%, variations in the reflectance of ugteglrock materials are very difficult to
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detect (Taranik, 1988). In direct application taning-related activities, Swayze et al. (2009)
note that the vegetation categories are an impodamponent of spectral maps because
vegetation and mineral/grass mixtures often coeesitderably more area than is covered by
mineral-related pixels on the maps. The author® ribat spectral maps that integrate
information from substrate-dependent vegetativesilization and lithologically independent
mineral identification can be used as a tool folin@ating areas more likely to contain
particular mineral endmembers and locate areagadl of dust control, and help fill gaps in
geologic mapping where access is limited.
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Figure 14 — Effects of vegetation to mineral mapping of &b minerals (Swayze et 4.,
2009)

3.3.4 Bi-directional reflectance distribution funcion (BRDF) effects

The BRDF effects (e.gspecularreflection for forward scattering drot spotfor backward
scattering) can lead to incorrect classificatiosutess. Most surfaces on earth expose a
relationship between the amount of reflected razhaand the directions of irradiance and
viewing. According to a specific viewing and irradce geometry an object appears brighter
or fainter. Bidirectional effects affect remotelgnsed observations in several ways. As soon
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as viewing and/or irradiance geometries within rgle scene, or a series of scenes, are
altered, the spectral reflectance signature ofsdmesed objects changes according to their
object-specific BRDFs.

Generally, the world has been considered to benadetian-scattering surface, however there
are numerous materials which exhibit non-Lambentédiectance behavior. Many man-made
materials appear glossy and exhibit a strong reflee value in the specular direction (view
direction has the same zenith as the incident argle are rotated 180 degrees apart in
azimuth) while many natural materials (e.g. grass soil) exhibit a strong reflectance value
in the backscattering geometry (view direction hias same zenith and azimuth as the
incident direction). These cases require a nonteoh8RDF value to accurately predict how
the materials will appear in a remotely sensed es¢eentilucci and Gartley, 2009). This is
also true when attempting to compare images frdfardint sensors, or from the same sensor
taken at different times (White et al., 2002; Saagimet al., 1998).

The research had shown that the spectral charattaraterials tends to converge to the
illuminating source spectrum as the specularitythef material increases, with the limiting
case being a perfect mirror. The results indiché tifferent material spectra, examined in
the specular lobe, tended to converge: not onlytdel spectral character of the colored
materials change, but they started to look simif&erefore, the spectral reflectance (i.e., the
BRDF) for materials does change as a function ofelangth and could (theoretically) cause
potential false alarms in collected imagery (Leriland Gartley, 2009; Sandmeier et al.
1998).
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3.3.5 Shadowing

The interpretation of hyperspectral imagery canfilseher complicated or hindered by
illumination variations due to shadowing, slopeddaim, or causes described above (e.qg.
vegetation, clouds). In atmospherically-calibratéata these variations in illumination are
expressed as oscillations in overall spectral aoqgei and signal response. In the deeper
shadows where the illumination is derived from wgatd skylight, the observed spectra are
not only dimmer but also exhibit skewing towardersér (blue-deep blue) wavelengths: these
effects can impede the classification of surfaceemas and the detection of targets with
standard methods (Adler-Golden et al., 2001). &éwtassification and detection algorithms
have been developed that are insensitive to illaton (Healy and Slater 1999; Adler-
Golden et al., 2001), but for numerous applicatibms considered advisable to normalize all
the pixels to a common illumination, such as fulhsand skylight. The procedure calls for an
ability to characterize the illumination-levels iffittness values) for each pixel, and in
particular to identify shadows and quantify theapths, which can also contribute elevation
information for terrain, surface objects, and cleud

Several methods have been discussed for identifgiy correcting for shadowing ranging
from linear unmixing of atmospherically correctedtal (Boardman, 1993) using spectral
endmembers to more simplified varieties of matchidring (Adler-Golden, 2001). The
linear method using spectral endmembers definedosigm as a “black” (zero reflectance)
endmember, and a sum-to-unity constraint is imposedthe endmember weights. The
iterative matched filtering method a purely spdbtihased approach, which does not take
advantage of spatial context or ancillary informatithat might distinguish between
shadowed and fully lit surfaces that are spectrsiltyilar, but delivers quick and on-the-fly
results that may aid in correcting the illuminatdifferences.

3.3.6 Radiometric considerations (GRS)

Measured gamma-ray spectra represent a completidaraf many variables (Minty 1997).
In addition to the concentration and geometry @& $lource, they are also functions of the
height of the detector above the ground, thickréssn-radioactive overburden (Schetselaar
et al., 1997), air temperature and pressure, pgtatgn, temperature inversion layers and air
movements in the lower atmosphere, as well agmsaigture.

Barren overburden, because of its high density,dramatically reduce the radiation output
from the earth's surface. Just 2cm of surface coaemreduce the resulting signal by as much
as 35 percent. In some areas, dense vegetationhmay the same capacity to shield the
source of radiation as 50m of air. The trunks e$srin a dense forest will have a collimating
effect on radiation from the ground. Changes inperature and pressure can also lead to a
change in air density by up to 30 percent. Thecefdé Rn (radon gas) trapped in temperature
inversion layers close to the ground under earlyning still-air conditions can adversely
affect estimates of background.

Airborne spectrometry measures surface radioelegmntentrations to a maximum depth of
about 40cm. uranium or radioactive element mineasibbn which is deeper than 40cm will
not be detected by the airborne spectrometers. tiSpaetric mapping of uranium also
assumes an overall equilibrium in th&) decay chain. Disequilibrium can occur where the
daughter products above the measured BismuBi)(in the decay chain are either enriched
or removed, thereby giving either an over- or urelmate of uranium. For example,
uranium anomalies can be caused by the accumulaefisadium {eRa) in ground waters.
Dickson (1995) showed that disequilibrium effectsoils were not large. Soil disequilibrium
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together with generally low count rates are sigatfit factors that contribute to the noise in
uranium channel data.

Uranium concentrations derived from gamma-ray spewtry are normally expressed in
units of ‘equivalent’ parts per million (ppm eU) ageminder that these estimates are based
on the assumption of equilibrium in their respeetdecay series. False uranium anomalies
can result from disequilibrium processes and iessential that anomalies identified using
airborne data are verified by soil and bedrock beoustry. Correlation of airborne
radioelement values with soil and rock geochemi@tjiford et al. 2009) is currently being
investigated as a means of better understandingessaround disequilibrium, scale and
accuracy of the spectrometric method.

Spatial resolution of gamma-ray data largely depeon the line spacing and distance to
ground of the airborne survey. Aircraft velocitydarount-rate determine the resolution in the
direction of the flight. The latter is usually betan 25 and 100m. Flight line spacing and
ground-distance are strongly related, and are lysaatompromise between data resolution
and acquisition costs.

A Gamma-ray sensor collects data from the grouradaircular area of influence. The further
away from the nadir-point (and the larger the raditithe circle on the ground), the smaller
the contribution to the total number of counts.sTHs illustrated in Figure 16. The figure
shows the relationship between the radius of ciofleénfluence on the ground and the
cumulative proportion of total signal at a sendoa altitudeH. For example, for an aircraft
flying at 60m altitude, 40% of the total signal cesrfrom within a circle of influence with a
radius of 50m.
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The figure implies that if the objective is to re@small features on the ground, the survey
should be performed at very low altitude (<50m) & aircraft speed (< 100 km/hr). In
the mining industry, such detailed surveys (al&ud30m, linespacing < 50m) are not
uncommon to map geology at a prospect scale.
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4. Inventory of field observation methods

Primary objective:
Inventory of field observation methods (geochemicgectral, geophysical) needed to
support and complement the airborne survey.

Airborne measurements are often supplemented wi#fitul field measurement methods as an
added element of ground-truthing and validatiohef airborne measurements. By collecting
point-measurement, it is possible to examine aerfeiatures in greater detail, discern
mixtures and use them as a method for atmosphairation of airborne data.

4.1 Spectral

The role of point-spectroscopy in validation andbration of airborne hyperspectral data has
been described in great detail by Clark et. al 819995 and 2002). Calibrating imaging
spectroscopy data to surface reflectance is agraitgart of the data analysis process, and is
vital if accurate results are to be obtained. Tlannmportance lies in greater confidence that
may be placed in the maps of derived from caliloragélectance data, in which errors may be
viewed to arise from problems in interpretatiorheaitthan incorrect input data.

There are several ways to derive usable surfatectafce from the acquired hyperspectral
data (discussed in detail in 86.2). The field-aaliton method can be two-fold: a) selection
and spectral measurement of a suitable “field-cafibn” site b) recording of the solar
irradiance over period the data is acquired. Timsasurements can aid in comparison of the
field or lab spectral measurements with the cooedmg spectra from the airborne imager
over a particular area. The radiance (irradianceasmements) or reflectance (field-
calibration) data may show differences which intkcahat additional corrections are
necessary to be applied on the airborne measursn@ntthe basis of the comparison, a set
of multipliers (gains) can be derived to moduldte airborne measurements with the high-
fidelity spectral measurements. When the correstiare applied to the data, the resulting
spectra are similar in quality to the laboratorflfectance spectra (Clark, 2002). Additional
areas in the data set can be used to verify atigefurefine the accuracy of the multipliers and
to derive any residual path radiance correction.
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Figure 17— Acquisition of field/calibration spectral measorents with spectroradiometer

The hyperspectral sun photometer calculation o&rsoladiance is based on the concept
vicarious calibration of optical remote-sensingtegss. Sun photometer measurements at
various wavelengths can be analyzed to estimatecular scattering, aerosol extinction, and
columnar concentrations of water vapor, ozone, tade gases in the atmosphere. The
approach uses a spectroradiometer (point-specteonedlibrated to standards traceable to
the National Institute of Standards and Technolagyg a reflectance standard panel that
exhibits nearly Lambertian 99-percent reflectaridee spectroradiometer is positioned above,
and aimed downward at, the panel. The proceduregerating this instrument calls for a
series of measurements: one in which the panellisifuminated by the sun, one in which a
shade is positioned between the panel and theasdniwo in which the shade is positioned to
cast a shadow to either side of the panel. Thd s®guence of measurements can be
performed in less than a minute. From these meamnes, the total radiance, the diffuse
radiance, and the direct solar radiance are caemildhe direct solar irradiance is calculated
from the direct solar radiance and the known rédiece factor of the panel as a function of
the solar zenith angle. Atmospheric characteristies estimated from the optical depth at
various wavelengths calculated from (1) the dirgafar irradiance obtained as described
above, (2) the air mass along a column from thesomeanent position to the Sun, and (3) the
top-of- atmosphere solar irradiance (NASA Stenmiac® Center, 2008 Tech Brief).

4.2 Geochemical

Previous studies have investigated environmentphots from historic mining and ways to

distinguish problem sites from innocuous sites @Hat al., 2005; Chevrel, 2005; Zabcic,

2005; Swayze et al, 2000). Conventional ground pdsho find and evaluate wastes have
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been found to be too time consuming and expenswie the remote sensing offered a
potential alternative. Overall, the discriminatiointhe mine waste or impact is focused on the
subtle changes in mineralogy and what are congidieréoe waste materials. This directly
correlates to the requirement for smaller pixeésand finer spectral resolution to resolve the
apparent observables (e.g. Vaughan, 2004). Howayemplementing this approach, often
very large data sets are obtained which have toabeled efficiently and rapidly. Processing
has to be faster, more accurate, and consisteft thié development of new mineral
identification algorithms. Another important issisethe level of accuracy assessment; the
studies suggest that field-checking with field $pmoeters and X-Ray Fluorescence (XRF)
and or X-Ray Diffraction (XRD) when metals are ilwexd (Hauff, 2005; Vaughan, 2004,
Swayze, 2002).

Another important element is water sampling in ¥i@nity of the mine area and associated
watershed / proximal waterbodies. The effect is edomes direct (e.g. acid mine drainage,
waste pile leakage), but is mostly indirect andeeB nearby waterbodies through
groundwater percolation/discharge. The water sasnple often analyzed for pH values,
concentration of heavy metals and/or presence tients, which may suggest potential
contamination.

Figure 18— Geochemical and pH sampling of the area affdoyetdxic waste flood.
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4.3 Geophysical

As with any remote sensing technique, calibratiod 2erification of the airborne gamma-ray
data by means of ground surveying is essential.

However, comparisons between the airborne and grtnaised readings should be treated
with caution (Martin et al., 2006) since the foatgps of the two techniques are quite different.
Portable field measurements are often made at dlmouteight at fixed locations. Assuming a
planar ground source with a homogeneous activibgentrations, then approximately 56% of
the acquired signal would come from within the intiage 2m radius envelope, while
approximately 92% of the overall would be deriveshi within the 10m radius (IAEA 1989),
hence the resulting measurement would appear tuibe localized (Figure 19).
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By contrast, an airccraft flying an average groimeight of approximately 60m during one
measurement, and nominal line spacing of 100m wagidtl a spatial resolution of 60 x

100m. Further, at a relative height of ~50m, ab@d% of the signal would be derived
beyond the radius circle envelope of 50m. This wWwaukans that a significant fraction of the
signal would be from beyond the nominal 60x100m sneament strip.

Another considerable difference may be that thentiog period for the ground-based
measurements may vary, allowing for longer coumiet and hence improved overall
statistics for the low-activity regions, whereag ttounting period for airborne methods is
largely fixed.
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Figure 20— Geophysical ground verification with field gaminag spectrometers.
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5. Focus on demo-site specifics and problems

Primary objective:
Summary of the most important characteristics, leimgles and required tools pertaining to
test-sites evaluated in the course of ImapactMibaine campaign.

Each of the test sites encompassed in the campalghit particular traits that are intended to
be evaluated by an airborne remote-sensing mefhiod. unique parameters also call for
special challenges to be overcome in order to ciplenalyze and implement the acquired
data. The nature of the challenge also dictatefotlmv-up activities and the methods chosen
in data acquisition.

5.1 Kristineberg, Sweden

Airborne remote sensing from an UAV can offer imtpat high resolution information on
ecological processes (mainly related to vegetatoi@mren ground and tailings) at the mine
site. The Kristineberg mine is a massive-sulfidseband precious metal mine located in the
Northern Middle Boreal sub-zone. The thick vegetatover, lack of clear days and low sun
angle in the northern latitudes presents a chadletogy using standard airborne spectral
surveys. By implementing the UAV platform, whichnddy “under-the-weather” with a light-
weight, high resolution digital camera, the objeetis to acquire the imagery at high-spatial
resolution, and determine vegetation to the spdeies and quantify the cover and biomass
of different plant species in the mine area. Tmfrmation can be used to quantify the
vegetation succession in short- and long-term. Goimdp the information (plant biomass)
from the UAV with field sampling (analysis of traeéement concentrations in vegetation), it
may be possible to assess the amount of trace eterfiecluding heavy metals) accumulated
by different plant species, which is an importamtremediation processes.

Analyzing vegetation in running waters along a igph@radient from the mining area offers
information on the impact of mining on plant specegmmposition in the riparian zone. The
analysis of species composition might result in ighentification of indicator species for
certain mining related environmental conditionsaBming aquatic vegetation (macrophytes)
along such spatial gradients is also importantherdetermination of the ecological status of
waterbodies in accordance with the EU Water FramleWaective.

5.2 Mostar Valley, Bosnia & Herzegovina

The ‘Vihovici Coal Mine’ is located in the Mostaralfey, Bosnia and Herzegovina. The mine
was exploited by ‘Rudnici mrkog uglja’ (Brown coatines of Mostar), a state-owned
company, but is inactive since 1991. The mine haéred production in 1901, first as an
underground operation, but from 1963 on, open jpiimg was performed. In total, 11 million
tons of brown coal (lignite) were extracted frone thine. 3.5 million tons were produced by
surface exploitation (open pitting). The total adathe mine site is 76 ha, with 43.2 ha
surface operations and an open pit of 7 ha. The mias used as public solid waste dump
from 1992 — 1995. lllegal waste dumping continuatdl 2007, when a remediation program
was started and in 95% of the mine area some ofstitace waste was removed.
Underground coal fires were (apparently) extingeshy water and fly-ash pumping.

The mine is located in a karst landscape, with @ated typical structures (e.g. caverns,
sinkholes, dolines). Geomorphology of the regioralso dominated by alluvial formations
along the Neretva River. The climate is a semi;dvldditerranean climate. Surface cover is
sparse and consists of low-lying Mediterranean lsh wild pomegranate mainly). There are
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five general zones of Neogene layers: sandstoreciar, sand-gravel clays, sand marls and
limestone. The main carbon-coal seam is composetirett bottom and roof layers and a
carbon layer with interlayer and refills of muckhel geology of the area consists of Perm-
Triassic strata, ranging from plaster-anhydritegicamsolidated limestone, clay and
mudstones, which are compressed during foldingodes and exposed on the surface and
thrusted upon Mesozoic rocks

Combined high-resolution hyperspectral/gamma-rayesuis intend to classify the areas of
interest at Vihovici abandoned brown-coal mine ndastar, Bosnia and Herzegovina with
regards to the surface mineralogical, vegetatiwelrdlogic and anthropogenic cover. The
narrow band-passes (5-10nm) and high spatial resol{lm or better) of the hyperspectral
imager is expected to allow definition of the deder observables parameters of surface
materials, in particular contaminants related taing (clays, sulfates), organic materials
(hydrocarbon polution) and overall surface-wastmposition of the mine closure area near
Vihovici (some of the surface refuse is mine-redaa@d some of it is municipal in origin).
Furthermore, by using better-defined atmospheriarpaters and narrow band-pass of the
instrument, the intent is to map the distributiord docation of possible toxic-gas emitting
fumaroles (CO, H2S, CO2, SO2) which may still besent as a result of underground
burning of coal seams in Vihovici region.

Lastly, any effluence of toxic substances into Mexeriver, via surface or subsurface
pathways is bound to generate detectable resppasigularly because the rivers are fairly
clean. Using the UV and deep blue regions of EMcspe covered by the hyperspectral
imager, it is intended to identify the zones ofreased nutrient load, increase in dissolved
solids or other phenomena suggestive of surfacsubsurface contamination of the karst
watershed.

Gamma-ray spectroscopic data can be flown in catjum with hyperspectral data to offer
additional information about the overall geologyt blso identify hot spot zones indicative of
industrial and military waste deposition at 1:1008¢ale. There are anecdotal reports of
radioactive waste dumped at Vihovici region befaering and after the 1992-95 war (e.qg.
Fichtner report, 2006), especially as a productvefipons testing and manufacturing of a
nearby Soko industrial facility. Additionally theege anecdotal reports of both Yugoslav and
intervening NATO forces using depleted-uranium rtions in the wider region, which have
been a topic of specialized environmental and hesitdies (e.g. Jia et al., 2006, Sumanovic-
Glamuzina, 2003). Using a high resolution, densgigeed radiometric survey, possible
presence of radioactive materials present in onratdviostar could be detected and further
substantiated or disregarded. In addition, the seeatjuences and other occurrences of
hydrocarbon deposits in the Central Dinarides megi@portedly contain above-average
radiation levels (e.g. Kljajic et al., 1996, Hroaic, 1999) as a result of uranium deposition
as a result of precipitation from the surroundingolggical strata in the vicinity of
hydrocarbon contacts.

The main challenges to the Mostar site are thedtisde of required airborne operations
and data acquisition over a heavily urbanized a€gerating in a congested area, with
overhead infrastructure (e.g power-lines) in atineddy narrow mountainous valley, requires
careful mission planning and safety consideratitmsninimize any potential risk on the
ground.

The airborne campaign will be complemented by tteuigd truthing, ground sampling and
water quality campaign on the ground, which will determined and adjusted with the
progress of the airborne operations in the area.
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5.3 Rosa Montana, Romania

From 1970 till 2006, the Rosia Montana mine was eivrand operated by the state.
Currently, S.C. Rosia Montana Gold Corporation SR.M.G.C.) is trying to obtain the
permits in order to again start operation (thealted ‘Rosia Montana Project’). Gold mining
in Rosia Montana has occurred almost continuousigr ahe last 2000 years and has
influenced the social, economic, cultural and emwvinental conditions of Rosia Montana.
Only underground mining operations were functioniogfore 1970. About 140 km of
galleries were dug in the area in nearly 2000 ye&amnining. Later on, the open pit mines
Cetate and Carnic were setup. The area of the ppens 19.75 ha (Cetate) and 5.2 ha
(Carnic). there have been no significant attempterevironmental rehabilitation and no
effective environmental controls to reduce the iotpaThe current situation is therefore
progressive: if no remediation actions are donaticaed pollution of streams and soil within
the area can be expected, primarily from uncordotun-off and seepage from the former
operations (activity closed in May 2006, site netabilitated), historic mine workings, and
uncontrolled waste disposal practices.

At the time this report was written, only limitedrlorne LIDAR coverage over Rosia
Montana mine in Romania was planned, acquired thyré party and integrated to the project
as a courtesy of data contribution from the Ros@nfdna Gold Corporation (RMGC). Rosia
Montana region presents a complex geological-mingmyironmental interaction area,
exhibiting over two millennia of surface and underghd mining and milling operations.
Mountainous, vegetated and water-saturated setfitige area gives additional complexity in
characterizing the area from the environmentaldgiamt.

Data acquisition and overflight permits in Romaaia considered to be the greatest challenge
in successful airborne campaign. Based on the atecdnformation available from
geophysical and geospatial survey providers, tlsgaisce of permits is a lengthy and
laborious process, which may extend beyond thetidaraf the ImpactMin project. The
planned LIDAR survey over Rosia Montana was regyt@egotiated far in advance, and
even though an effort was made to “piggyback” Intlbke survey equipment on the existing
survey, the request was declined by the providerteAtative agreement between the
ImpactMin project coordinator and representativesmf RMGC exists to explore the
feasibility/possibility of acquired airborne LIDARand/or other data) integration into the
analysis and evaluation nexus of ImpactMin.
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6. Tools for airborne remote sensing for mineral resorces
exploitation monitoring

Primary objective:

Evaluation the limitations of available data prosegy techniques. Development of new ways
of processing the geophysical and hyperspectra.déinecessary, current software needs to
be modified, and new software may need to be deselo

The analytical methodology presented is primargamgd towards analysis and interpretation
of hyperspectral datasets, but some elements sarbal used in the evaluation of supporting
datasets (e.g. multispectral, radiometric, aerom@gy Furthermore, the integral part of
analysis is the horizontal integration and crosshais of all available data to reveal subtle
observables that can be used in identification wof idformational “super-spectrum,” a
combined observable spanning multiple sets of data.

Some of the general guidelines in the pre-procgsaimd analysis of hyperspectral data were
described in the MINEO (2003) report and remairtipent to the present day with the need
for accurate atmospheric corrections, geometricection and clearly established chain of
processing and data reduction methods.

6.1 Pre-processing and radiance

The first element of hyperspectral data exploitai®the calibration of raw data to radiance-
at-sensor and eventually reflectance, which carcdreelated with various other physical
elements of given observables (e.g. spectral absngoand emissions). This step is usually
undertaken by the provider of HSI-data and is gahelinstrument dependent, taking in
account various elements of instrument noise (dewkrent subtraction), spectral and
radiometric calibration, focal plane adjustmentsg.(ebad pixel problem), geometric
distortions etc. The most important element in \deg radiance-at-sensor is a sound
radiometric, and consequently spectral calibrati®enerally, the most widely used solution is
based on the fact that the radiometric calibrai®mpredictable and slowly varying as a
function of wavelength and this allows the use af ieerative procedure to adjust the
instrument gains and signal response. Ultimatelgpad radiometric calibration allows for
the mitigation of so-called “bad-pixel” problem @ft encountered in complex SWIR focal
plane arrays. Minor voltage fluctuations, saturadicunder-scans and similar effects results in
visible data-artifacts which are mitigated usinggiified physical model. The pixel is
assumed to be made of 3 components: a bright coempdaving reflectance of 1, a dark
component having a reflectance of 0 and a variablaponent which has reflectance that
varies between 0 and 1 in the region under corsiider The scanning and geometric effects
are addressed by tagging each scan line with difteel GPS measurement and then post-
processing scan and geometric distortions to pmdensor input geometry maps. The end-
result of the pre-processing is a solid radianegeasor data, free of distortions and ready for
input into further calibration algorithms and inrteén cases, radiance-based target detection
(e.g. ITTVS BandMax algorithm ).

6.2 Reflectance calibration.

For the atmospheric correction of hyperspectrah @atadiative transfer modelling approach
is the preferred method used. Several differenhots have been used for HSI calibration in
the past: Fast Line-of-sight Atmospheric AnalysisSpectral Hypercubes(FLAASH) (e.g.
Adler-Golden et al., 1999) and the Moderate Rdgwiu Atmospheric Radiance and
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Transmission (MODTRAN) model (Berk et al., 1998; tthaw et al., 2000). These
transformations are based on the model and areidesed relatively hands-off in the
approach.

Another method is based on the retrieved surfeftectance method where image spectra are
directly compared to reference spectra for pureenails that are archived in spectral libraries.
Both the USGS and JPL have spectral libraries abi@l via the Internet and contain
VNIR/SWIR spectra for over 2000 minerals and rocésbined (e.g. Clark et al., 2003). For
calibration sites, large (multi-pixel), flat aretémt are mineralogically homogeneous and free
of vegetation are chosen for field spectrometer sueaments. A point-spectrum
spectroradiometer is used in the field for minadantification and calibration of remote
sensing data sets, as well as in the laboratoryhign-resolution characterization of field
samples (Curtiss and Goetz, 1994). The data atwai@d to reflectance by measuring a dark
current to define detector "noise” that contribuieshe incoming signal, and by measuring
the radiance from a white spectralon® (Labsphere) reference panel of known reflectance.
The field data are then compared against the satear for the same target to derive the
empirical-line reflectance (see Baugh and Groemk\2£08 and references within).

Recently, another method was described by Peppiddj2o handle reflectance calibration of
high-spectral resolution (e.g. 5 nm or better) skim and address the inadequacies of
MODTRAN-based applications. The Virtual Empiricahke Calibration (VELC) method
presents an alternative method by using obtaimbdm@e imagery for a “generic” spectra and
produced a calibration spectrum that can be usédurof flat-field or empirical-line spectra,
usually obtained through ground measurements.

6.3 Data analysis
There are numerous ways to approach the analysis dassification of airborne
measurements. Many techniques already exist imthge processing and some are integral
part of various image processing software packégegs ENVI, IDRISI etc.), but certain may
not be effective when they are directly appliechygperspectral imagery and hyperspectral
imagery containing variety of linear and areal migs. Overall the hyperspectral data
processing is more demanding and non-linear thatigpectral data discussed in D4.1. The
term “classification” itself can be considered ® ds a statement of odds: the probability of
finding a desired target or spectral match. Geherdle classification can be subdivided into
two distinct methods:

a) Supervised classification in which the targetstifi@r classification are known at start

b) Unsupervised classification, in which the statstat the entire image are computed

and binned into a number of groups chosen by thethat are statistically distinct.

In the realm of hyperspectral image analysis, thayast often has some idea what the goal of
classification is, the information can be used @infé, steer and supervise the targets being
classified, hence favoring the methodology of suiged classification. The techniques
discussed below outline some of the recent advaadsaccepted methods of hyperspectral
data processing, but are by no means limited tp th@m.

6.3.1 Spectral hourglass method

One of the most-often used analysis/interpretat@thods is the “spectral hourglass method”
in ways to find pixels that represent spectral sr@mbers (Kruse et al., 2003). The Spectral
hourglass method provides a consistent way to extspectral information from
hyperspectral data without a priori knowledge auigng ground observations. Key point of
the methodology is the reduction of data in bothgpectral and spatial dimensions to locate,
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characterize, and identify a few key spectra (emdbers) in the hyperspectral image data
that can be used to explain the rest of the hypetsgd dataset. Once the endmembers are
selected, their location and abundances can be edafsjpm the linearly transformed or
original data. These methods derive the maximurarinétion from the hyperspectral data
themselves, minimizing the reliance on a priorootside information. The hour-glass method
heavily relies on the Pixel Purity Index (PPIl) qurtation and spectral dimensionality
analysis described by Boardman et al. (1995) candeel to find spectrally “pure” pixels
(target spectra), which represent compositionailtyiritt areas (Kruse, 1988; Boardman and
Kruse, 1994; Kruse et al., 1996). The approachifsigntly reduces the number of pixels that
need to be searched for mineralogic spectral inddion, but it also finds pixels that are not
necessarily of geologic interest e.g. urban/ caltdeatures, and vegetation. The second
method is similar, except the pure pixels are chdse defining regions of interest around
obvious geologic targets (e.g., non-vegetated andumban areas) and these pixel spectra
were viewed as points in n-dimensional space tecte¢he outliers (Vaughan, 2004). Each
spectral end member is used as a target spectautirain” the pixel classification method
described next. The derived endmember pixels assified using two different supervised
classification methods: 1) Spectral Angle MappehNS (Kruse et al., 1993) and Mixture
Tuned Matched Filtering (MTMF) (Boardman et al.9%%

SAM classifies pixels together based on their spésimilarity by treating spectra as vectors
in n-dimensional space and calculating the anglevden them. Spectral Angle Mapper
differs from standard classification methods, beeaticompares each pixel in the image with
every endmember for each class and assigns a p@iotervalue between 0 (low
resemblance) and 1 (high resemblance) (Girouardl.et2004). SAM measures spectral
similarity by calculating the angle between the tspectra, treating them as vectors in an n-
dimensional space: small angles between two spextieate high similarity. The method is
not affected by solar illumination factors, becauke angle between the two vectors is
independent of the vectors length (Crosta et @b3).

SAM has been used successfully in the past foroggml mapping and for identifying
potential mineral exploration sites, using the US&$ctral Library as reference spectrum
(Crosta et al., 1998).

The MTMF method generates proportional spectral medhber abundance maps based on
partial unmixing of image target spectra (Boardngral., 1995). For each end member
mapped, a region of interest (ROI) is defined dgd@ng a threshold range of values from the
abundance maps that corresponded to the highestlaihce. In the approach, only the user-
defined targets are mapped where the pixel valudanoutput image is proportional to the
fraction of the pixel that contains the target mate Any pixel with a value of O or less
would be interpreted as a “background.” The MTMBoatlerives an “infeasibility” image,
which is based on both noise and image statistick indicates the degree to which the
matched-hit is a feasible mixture of the target @mel background. Pixels with the high
infeasibility are likely to be false positives, acah be eliminated from the classification.

An alternate method, described by Coulter (2006)sBg shape based classification and
partial unmixing. The spectral curve similarity s$éication is obtained by using Spectral
Correlation Mapper (SCM) (de Carvalho and Mene2884). A partial unmixing of the
spectral data is performed using Optimized Crossrglagion Mixture analysis (OCCM)
(Coulter, 2006) while the particular absorption dagvosition analysis is performed using
Gaussian fitting (Brown, 2006). The SCM algoritisnimplemented by using library spectra
of the candidate observables; the “best” locatimlentified by SCM are inspected in the
image; and the best image endmembers are idendgifidextracted.
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6.3.2 Non-Gaussian methods

A somewhat opposite approach is to develop teclesigiiom a hyperspectral imagery
viewpoint where noise is generally considered awm@xGaussian element and interference
plays a more dominant role than apparent noise yjpetspectral image analysis. More
importantly, the detection and classification isfpened and carried out by targets of interest
rather than pattern classes. Stemming from thecipien that the end-members define the
simplex of greatest volume is the underlying b&sighis algorithm. The rotation of the data
cloud, which is the main component in a traditiomsthod does not change the identity of
the end-members, which is of paramount importamceesit allows the use of orthogonal
subspace projections (OSPs) for the reduction ofpetspectral image dimensionality
(Harasanyi and Chang, 1994) . Dimension reductianQSP (i.e. Principal Components
transform, MNF transform, or singular value decosipon) is considered necessary to
reduce the overall number of bands in an imageetorte less than the final number of end-
members sought. The algorithm views the hyperspleatnage as a mixture of several
mutually exclusive classes. Each of these classetescribed by a linear combination of
independent components with non-Gaussian (sub-@auss super-Gaussian) probability
density functions and in turn allocating particulaxdmember into a particular class on the
basis of probability. There are variations of then4tinear method, such as Constrained
Energy Minimization (CEM) which take advantage aftcular image endmember elements
rather than the entire set of image endmemberseligeminimizing the need for a-priori
knowledge of observable characteristics (Harsal883; Farrand and Harsanyi, 1997). The
CEM approach is preferred over other multi-dimenalalgorithms because the intent is to
classify all of the pixels in an unknown hyperspaicécene. The other OSP target detectors
are only effective against small targets. In otlverds, an advantage of CEM is that the low
occurrence constraint required by the other deteasoeliminated. The primary disadvantage
is that the dominant subspace is not completeiyietited as in some of the other tools (e.g.
Dominant Subspace Project detection).
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Figure 21 — Differences in covariance and CEM-based analystsyperspectral data (frofn

Smailbegovic et al., 2005).

6.3.3 Sub-pixel classification

The sub-pixel classification procedure tries toemd\possible mixtures of classes and defines
for each pixel the area fractions covered by thHéemint cover types. A number of fuzzy
classification techniques have been investigatedhis purpose with the most widely used
being Artificial Neural Networks (ANN) (Atkinson etl., 1997) (see 5.2.3) and Spectral
Mixture Analysis (SMA) (Adams et al., 1993). The jortaadvantage of an ANN is that it is
able to address non linear mixing effects causenhbiyiple scattering of photons (Mas et al.,
2004). The disadvantages of ANN’s are the requirdnod obscure initialization values
(Varshney et al., 2004) and their sensitivity tepdsed problems (Kulkarni et al., 1991).
ANN’s moreover act as a black box (Benitez et 897) and are very computer and time
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intensive. On the contrary, SMA is directly driviey the physically explicit mixture models.
Linear SMA techniques first identify a collectior spectrally pure constituent spectra or
endmembers (VanderMeer et al., 1995, Lobell et281Q4). Each measured spectrum of a
mixed pixel is then expressed as a linear comlmnaif endmembers weighed by fractions or
abundances that indicate the proportion of eacimentber present in the pixel (Adams et al.,
1993). The abundances are typically estimated usiiegleast squares estimation (LSE)
method (Barducci et al., 2005). The quality of @me@members will as such drive the success
of the unmixing approach. Pure spectra can be mddaby spectrally measuring different
ground cover materials in the field or laboratasy,automatically extracting them from the
imagery. The most widely used automatic techniqoesndmember extraction include the
pixel purity index algorithm (Boardman et al., 199%he N-FINDR software (Winter et al.,
1999), or the iterative error analysis algorithmeyile et al., 1999). A number of new
endmember extraction methods are presented (Segjuerdjection Algorithm (Zhang et al.,
2008), Vertex Component Analysis (Nascimento et 2005), Sequential Maximum Angle
Convex Cone (Gruninger et al., 2004), Iterated @amed Endmembers (Berman et al.,
2004), Simplex Growing Algorithm (Chang et al., B))O

6.3.4 Wavelet transforms

Wavelet transforms have been increasingly usedlifoensionality reduction (Bruce et al.,
2002). A wavelet is a mathematical function useditade a continuous spectral signal into
different frequency components and study each commmowith a resolution that matches its
scale.Wavelets have advantages over traditional Fourgrstorm for representing functions
that have discontinuities and sharp peaks. Wavalsts have advantages for deconstructing
and reconstructing a signal. Discrete Wavelet Toans (DWT) and Continuous Wavelet
Transform (CWT) are two types of wavelet transfaiores. Salvador (2008) illustrated that
the application of the wavelet packet transformthe spectral space of hyperspectral and
ultra-spectral imagery data improved the computatidractability and the detection of trace
gases in airborne and spaceborne spectral imagery.

6.3.5 Classification tools for Gamma-ray data

The most common approach for interpretation of gamnay data is to produce a ternary plot
for the three elements K, eU and eTh (Figure ZBe common ratios are U/Th and Th/K

which tend to highlight particular emissive chaeastics. Better visual interpretation can

often be achieved when integrating the ternaryoeldment map with other data, such as
optical satellite, radar or digital elevation désae Figures 23a-f). Subtle variations in the
measured radio-elements can be enhanced usingahegisos of the different elements. For

example, the ratio Th/U has important applicatitmsnineral exploration and for mapping

igneous intrusions and potassic alteration (Dicksbal., 2004). This ratio may be used to
discriminate between different magmatic rocks. Kfaitios can be used as indicator for the
degree of weathering within saprolite profiles (@ar2006), as well as detection of K-

alteration (GSC-2007). Huston et al (1998) ussdim@tios to map both primary geological
features and alteration facies in Massive Sulptddsricts (Figure 24). De Quadros et

al.(2003) used a variety of ratios to map hydratiedralteration related to lode gold deposits
in Brazil. Andreoli et al (2006) use several ratiosharacterize different metamorphic grades
in the Western Namaqualand Belt, South Africa
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Figure 1: Ternary radioelement map of the south coast of Newfoundland with a geological
overlay derived from O'Brien et al. (1986) and van Berkel et al. (1386, 1987)

Figure 22 — Ternary radioelement map of the south coast eWfdundland. Courtesy:
Natural Resrouces Canadattp://gsc.nrcan.gc.ca/gamma/appgeo_e.php

However, with the greater use of additional spéatfarmation derived from the gamma-ray
channels using the full-spectrum analysis, soméhefimage-statistical tools can also be
implemented to obtain additional information frone tdata. Principal component analysis (of
wich the so called MNF is a special case, oftens®t to remove noise from the data) is an
effective way to enhance the visibility of subtl@ations in gamma-ray data. The technique
can be applied to both conventional three-channel-Kh data (IAEG, 2003) and to multi-
channel radiometric data (Minty, 1998).

Multivariate analysis techniques such as SupervasetlUnsupervised classification provide
powerful means to understand the information coethiin the data, both with respect to the
spatial and spectral patterns relationships thet evthin the dataset (IAEG-2003). This is
instrumental to the understanding of the meaninghefdata in terms of processes such as
geology, hydrothermal alteration, erosion, weatigriregolith formation, soil degradation,
environmental impact, etcetera. Good examples o slassifications are provided by e.g.
Anderson (1998), Martelet et al (2006), Roberigl €2004), Goossens (1992).

53



IMPACTMIN Contract\e: 244166

£ ] (4] [ BT
Carajas, Brazil. S.AR C HH Wide Mode & Total Count Integration, o

Kilometres

Figure 23a- Ternary relative radio-element abundance nbaptmage sharpened with high-

pass filtered Landsat band TMB; Image integrated with relief shaded total couatac
(IAEA, 2003); d- Airborne SAR/gamma total count integrated prod(Raradella et al.

1997); e- Combined gamma-ray ternary image with DEM as 3Bpective enables the

visualisation of complex relationships between thamma-ray response and terr

hin

morphology attributes (Wilford et al., 2002); Airborne potassium overlain on a hillshadged

DEM for in a forested area near Batlow, NSW. Ouwitirdark blue areas correspond to ba
flows (Bierwirth et al., 1999)
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Figure 24 — Maps of the Panorama Massive Sulphide distrith distribution of alteratior
facies (right) and the K/Th ratio from airborne Gaairay spectrometric data; from Hustor] et

al. (1998)

6.3.6 Data Integration

The term “horizontal-data integration” is a morecgmed term than the “data-fusion”
commonly used before to denote methodology of ewnpdp combination of multi-source
data to derive particular set of observables usadrget detection. The main reason is that no
data is actually fused, but is integrated in theera of layers or defined observables to
accurately account for all of the imaged targetratiristics (e.g. shape, texture, spectral
features). The need to seamlessly integrate wadatasets stems from the increasing types
of sensing systems used, differences in spati&ctsd and radiometric resolution and the
modes of acquisition (active, passive, nadir-logkioff-nadir, horizontal etc.). Integrating
remotely sensed data, especially multi-source nesnelnallenging particularly in regards to
viewing geometry, nature of the target observed @matracteristic observables that may or
may not be present under all observation conditi®tailed discussion of horizontal data
integration is presented in D4.1, 85.5.

The primary path of data integration presentedhi ImpactMin project revolves along
merging multispectral/hyperspectral satellite waitborne hyperspectral data, and to a lesser
extent merging airborne hyperspectral with gamnyagpectroscopic data. The primary
concerns are the issues of scale/resolution andédffects on the detectability of particular
targets. In any data integration, being able t@luesparticular targets in varying imaging
parameters becomes of crucial importance. Smailbeg@006) has presented a study on
analyzing available radiance and reflectance datal (ancillary sets) on ProSpecTIR,
HyperSpectir (HST), HyMap, Low and High altitude RIS and Hyperion hyperspectral
data over a cross-correlated discrete target-aresept in all of the sets gathered in the
geospatial database (i.&uddingtonite Bumparea in Cuprite, NV). The goal was to
demonstrate at what spatial or spectral resolutomparable to the available sensor data, the
target signal would become overwhelmed by the néisevever, it was demonstrated that the
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majority of hyperspectral sensors produce comparedgults and can identify characteristic
signature of buddingtonite mineral at spatial re8ohs ranging from 1m to 30m, sampling
interval ranging from 5 to 16nm and airborne tocgerne mode of operation. Furthermore,
it was demonstrable that the same area yielded stemjar results regardless of airborne
imager used. Improved spatial resolution allowstl@r spectrally unique areas to be resolved
and constrained better, while improved spectrablud®n allows for sub-classification of a
particular endmember with regards to minute difiees in the type, purity, composition, but
also illumination, imaging geometry and so on.

In the course of ImpactMin project, the intent ésrepeat this detectability threshold over
variety of sensing systems used and determine ai syfatial/spectral resolution the particular
target observable disappears or becomes enhandbdawiinflux of an additional data
element.

30m d 20m led 5m R led 2m Resampled

BUDDINGTONITE BUMP AREA, CUPRITE, NEVADA
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Figure 25— Analysis of target detectability as a functidnspatial and spectral resolutiop:
important parameters in any data-integration (agthpom Smailbegovic, 2006).
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7. Conclusions

The imaging and analysis of environmental factetated to mineral extraction with airborne
HSI/GRS remote sensing is a complex task of resgltargets and observable characteristics
coupled with the inherent dimensionality of spdatica. Ultimately, the ability to resolve the
subtle indicators and clues is directly proportidoahe quality of data collected, but also the
premises and parameters determined in data acqgnisihd analysis. In conjunction with all
other available methods, the airborne spectral @nagields the highest score in the quantity
and usability of data collected. Furthermore, bygighe sheer quantity and redundancy of
HSI/GRS data, it is possible to increase the ledfeconfidence in target unmixing and
detection, reinforcing the advantage over othesisgnmethods in the terms of confidence,
time and overall cost effectiveness. Therefore, ditborne component fills the important
niche situated between in-situ measurements argkbpme sensing.

The main advantages of the airborne approach islfiigy to resolve the surface detail in
high spatial and spectral resolution, over reldyiwgide area and low-to-moderate overall
cost of acquisition. These qualities make it insmegly popular with the industry in

appraising mineralization potential of the areapety of surface cover, distribution of
pollutants, anomaly identification and search/recgy The spectral information provides a
fairly robust approach in extrapolating compositminthe particular imaged target and its
classification or isolation from the background.

The main disadvantages of the approach are thdreemgnts for nearly ideal acquisition
conditions: clear weather and abundant sunlighthigwerspectral and low/level-flight for
gamma ray sensors. The secondary disadvantagdsearelatively high cost of mobilization
and the amount of data generated that requiresasyable technical proficiency in analysis
and interpretation.

Some of these obstacles can be tackled by usingl mgthods in acquisition (e.g. use of
unmanned aircraft, smaller sensors etc.), but ialsupporting the airborne data with other
types of in-situ or satellite data to achieve battdibration, in-fill the coverage gaps, or most
importantly precisely target the airborne datalie areas where increased spatial/spectral
detail is required.

The study sites presented in this report presentideal testing ground in appraising
capabilities of an integrated airborne collectippraach with the other types of data because
of their environmental diversity, presence of mantr signatures characteristic of mineral
exploration and exploitation and different stragsgirequired or available to collect the
necessary information.
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