risk-based inventory of mining waste

EU legislation, assessment, methods and implementation

Gyozo Jordan

European Commission
Inventory of Closed Waste Facilities Working Group

Technical Adaptation Committee of Directive 2006/21/EC

IMPACTMIN FINAL EVENT 27-28 November 2012, Luleå, Sweden

MINING, MINING WASTE AND RELATED ENVIRONMENTAL ISSUES: PROBLEMS AND SOLUTIONS IN CENTRAL AND EASTERN **EUROPEAN CANDIDATE COUNTRIES**

MINE WASTE DIRECTIVE – INVENTORY

FINAL February 2011

GUIDANCE DOCUMENT

A RISK-BASED PRE-SELECTION PROTOCOL FOR THE

INVENTORY OF CLOSED WASTE FACILITIES

AS REQUIRED BY ARTICLE 20

DIRECTIVE 2006/21/EC

INVENTORY OF CLOSED WAS TE FACILITIES AD-HOC GROUP

A SUB-COMMITTEE OF

THE TECHNICAL ADAPTATION COMMITTEE

DIRECTIVE 2006/21/EC

Developed by

Gerry Stanley, Gyozo Jordan and Tamas Hamor with the support of Michel Sponar

2011

DIRECTIVE guidance

DIRECTIVE preparation

Inventory and risk classification of closed mine waste facilities of Hungary

(Version Nel)

MBFH-ELGI-MÁFI cooperation (10/2012)

Consigner:

Hungarian Office for Mining and Geology

János Kiss Gvöző Jordán

Co-author:

Gergely Detzky, László Vértesy, Tamás Müller, István Zsámbok, György Paszera, Ágnes Gulvás, Gabriella Öri, Károlv Rádi, Viktor Hermann, Csaba Jerabek, Ahmed Abdaal, Júliánna Albert

The English translation was made on the basis of the Hungarian version as of 30/04/2012

30 April 2012, Budapest, Hungary

DIRECTIVE *implementation*

AJKA – 2010. October 04.

the solution: Risk Assessment

EU Mine Waste Directive (2006): risk-based inventory mine waste sites *(ARTICLE 20)*

Contamination Risk=

(probability of contamination) x (significance of toxic impacts)

Risk Assessment (RA):

- (1) hazard characterisation
- (2) toxicity analysis
- (3) contaminant transport
- (4) exposure assessment
- (5) risk characterization
- (6) risk management

Risk Assessment – principles & conditions

1. Risk-based

- Source Pathway Receptor
- Risk ranking
- Major exposure rutes (SW, GW, AIR, DC)
- Uncertainty: high risk (precautonary principle)

2. Verification, Monitoring

3. Efficient – Tiered Approach

- Tier 0: pre-selection (screening)
- Tier 1: selection (ranking)
- Tier 2: assessment

Pre-selection

preliminary risk assessment

Tier 0.

Pre-selection preliminary risk assessment

FIVAL.....February 2011

GUIDANCE DOCUMENT

FOR

A RISK-BASED PRE-SELECTION PROTOCOL

FOR THE

INVENTORY OF CLOSED WASTE FACILITIES

AS REQUIRED BY ARTICLE 20

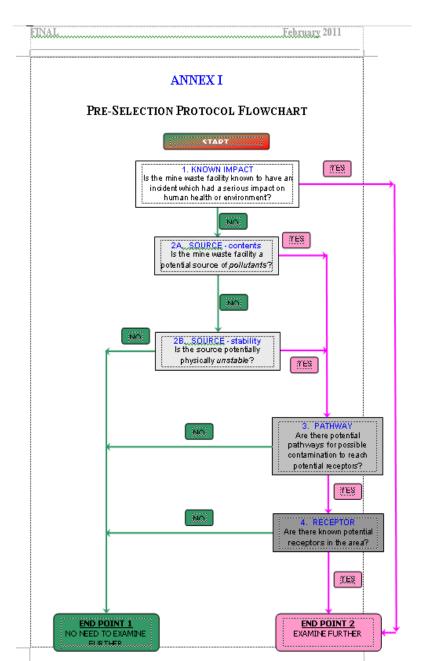
OF

DIRECTIVE 2006/21/EC

INVENTORY OF CLOSED WAS TE FACILITIES AD-HOC GROUP

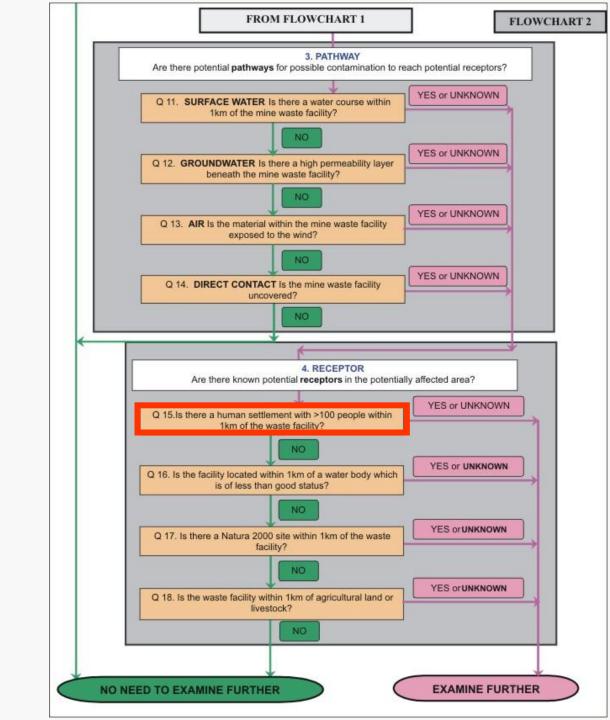
A SUB-COMMITTEE OF

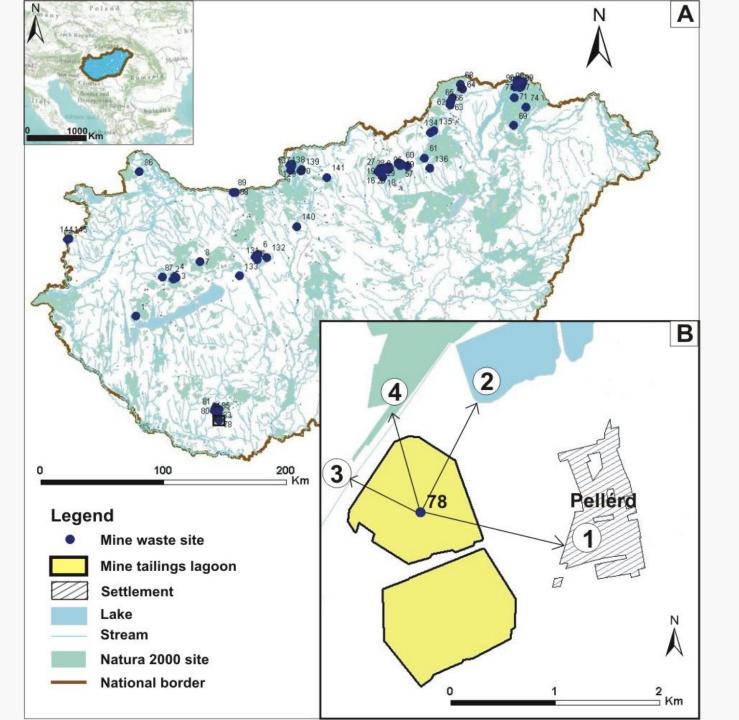
THE TECHNICAL ADAPTATION COMMITTEE

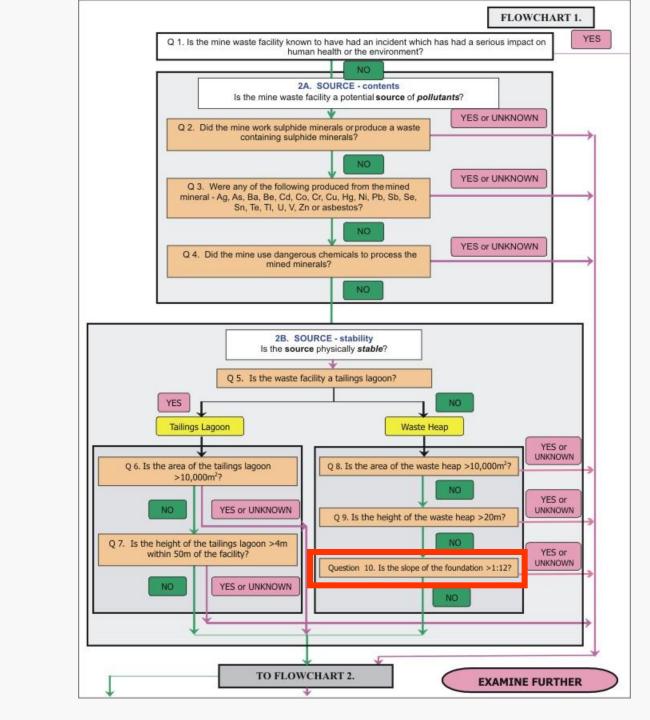

FOR

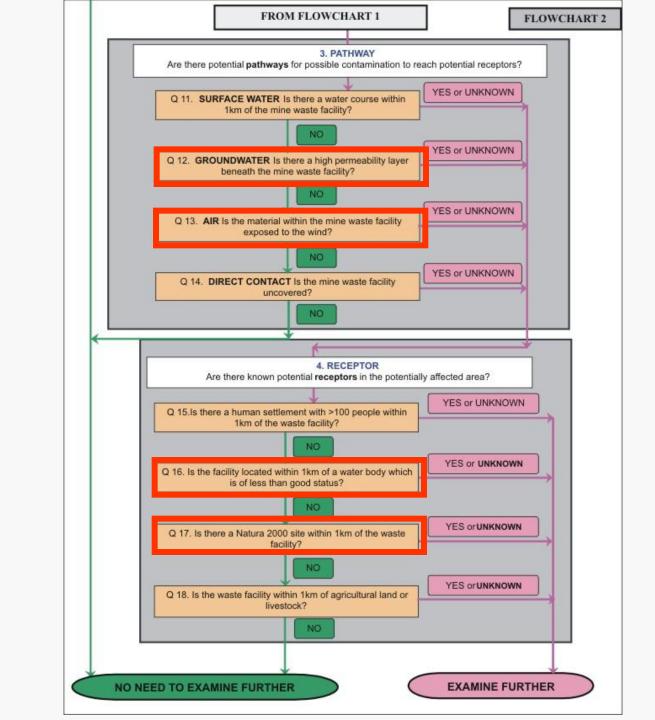
DIRECTIVE 2006/21/EC

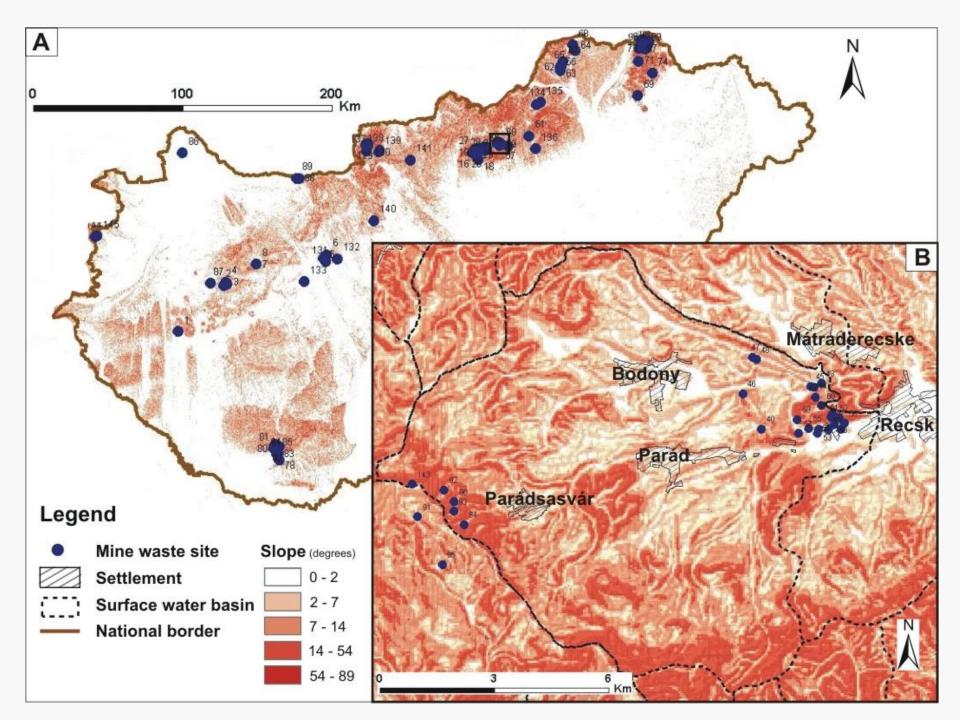
Developed by

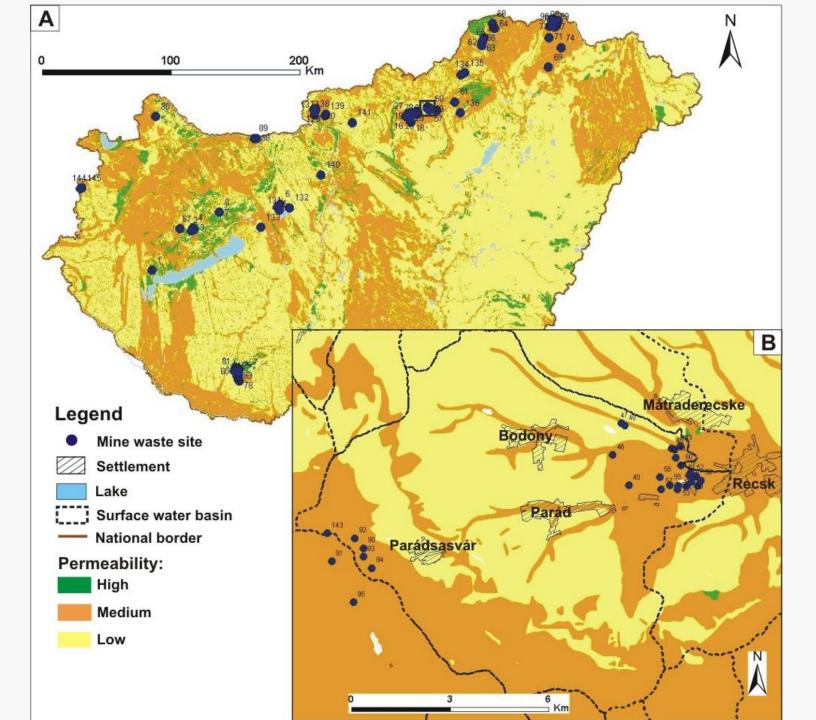

Gerry Stanley, Gyozo Jordan and Tamas Hamor with the support of Michel Sponar

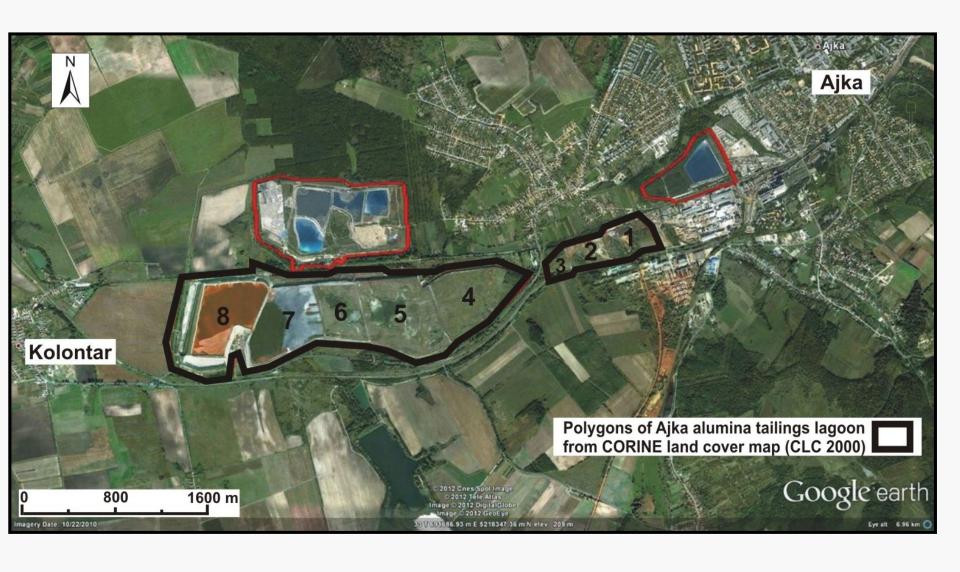

2011

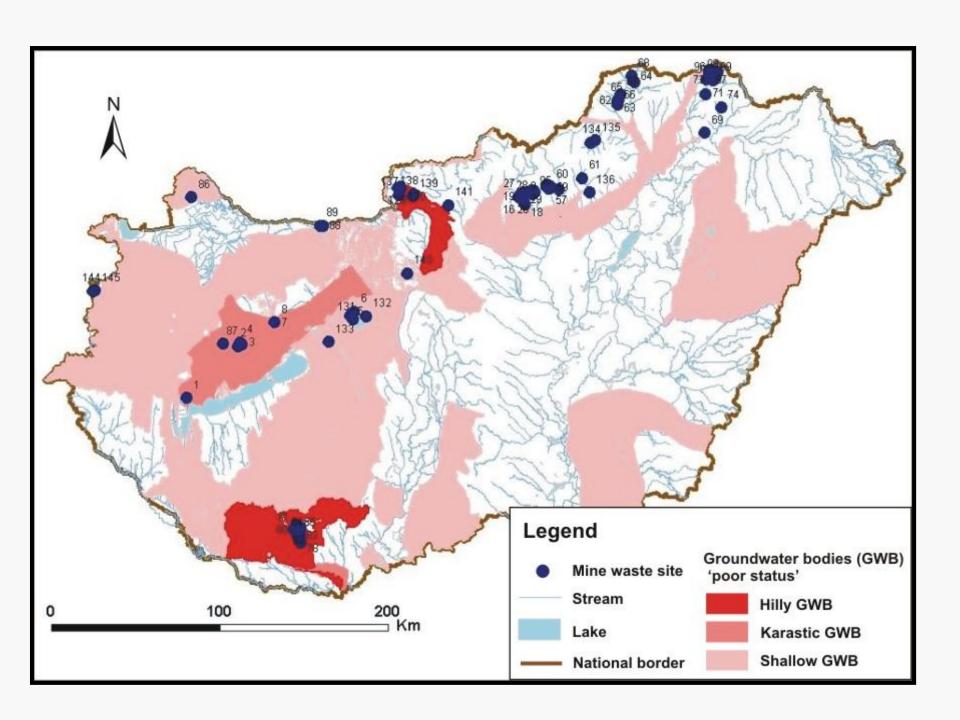



Pre-selection Protocol


- √ 1 Known Impact
- √ 9 Source
- √ 4 Pathway
- √ 4 Receptor







VERIFICATION: Field Work & Observation

Selection

risk ranking

Tier 1.

Selection risk classification

Specific parameters – REMEDIATION

Was there remediation?

• Is the remediation completed?

• Is the remediation successful?

CLASS 'Z': ('Zagytározó' in Hungarian) tailings lagoon

- 1. Non-remediated
 - **1.** Big facility ($>10~000\text{m}^2$)
 - 1. On steep slope (slope>5°)
 - **2.** On flat slope (slope<5°)
 - **2.** Small facility (<10 000m²)
 - 1. On steep slope (slope>5°)
 - **2.** On flat slope (slope $<5^{\circ}$)
- 2. Remediated
 - **1. B**ig facility (> $10\ 000\text{m}^2$)
 - **1. O**n steep slope (slope>5°)
 - **2.** On flat slope (slope $<5^{\circ}$)
 - **2.** Small facility (<10 000m²)
 - 1. On steep slope (slope>5°)
 - 2. On flat slope (slope<5°)

CLASS 'M': ('Meddőhányó' in Hungarian) waste heaps

- 1. Non-remediated
 - **1. B**ig facility ($>10 000 \text{m}^2$)
 - 1. On steep slope (slope>5°)
 - 2. On flat slope (slope<5°)
 - **2.** Small facility (<10 000m²)
 - 1. On steep slope (slope>5°)
 - 2. On flat slope (slope<5°)
- 2. Remediated
 - 1. Big facility (> $10\ 000\text{m}^2$)
 - 1. On steep slope (slope>5°)
 - **2.** On flat slope (slope<5°)
 - 2. Small facility (<10 000m²)
 - 1. On steep slope (slope>5°)
 - 2. On flat slope (slope<5°)

TAILINGS								
Without	Big	Steep d>5						
remediation	(>10000 m ²)	Flat d<5	Korpáshegyi vörösiszap zagytározó, Neszmély	1				
	Small (<40000 m ²)	Steep d>5						
	(<10000 m ²)	Flat d<5						
Remediated	Big (>10000 m ²)	Steep d>5	Száraz-pataki flotációs zagytározó, Gyöngyösoroszi	2				
	(>10000 m)		Régi flotációs zagytározó, Recsk	3				
			Bence-völgyi flotációs zagytározó, Gyöngyösoroszi	4				
		Flat d<5	Ajkai vörösiszap zagytározó	5				
			MÉV I. zagytározó, Pellérd északi	6				
			MÉV II. zagytározók, Pellérd déli	7				
			Almásfüzitői Ny-i vörösiszap zagytározó	8				
			Mosonmagyaróvári vörösiszap zagytározó	9				
			MÉV Perkoláció II. üzem zagytározó, Kővágószöllös	10				
			Almásfüzitői K-i vörösiszap zagytározó	11				
			MÉV Perkoláció I. üzem zagytározó, Kővágószöllös	12				
			Úrkúti mangániszaptárózó	13				
			Új flotációs zagytározó, Recsk	14				

Results web presentation



Figure 1: Internet presentation of pre-selection results by means of

Bánta bánya

Bánta bánya									
NÉV	Bánta bánya								
TELEPÜLÉS	Várpalota								
MVVF	19-156								
EOVY	578146								
EOVX	205894								
ISMERT VESZÉLY	NINCS								
ANYAGTARTALOMVESZÉL'	YVAN								
STABILITÁSVESZÉLY	VAN								
TERJEDÉSVESZÉLY	VAN								
VESZÉLYEZTETETTSÉG 👚	VAN								
VIZSGÁLANDÓ?	IGEN								
ELŐSZŰRÉSI KÓD	11201220								
REKULTIVÁLT?	NA								
TEWESEN?	NA								
SIKERESEN?	NA								
TERÜLET (ha)	1,5								
DŐLÉS (fok)	6								
SZŰRÉSI KÓD	1010116								

Figure 2: Internet presentation of pre-selection and selection results by means of maps.google.com KML format (April 2012)

Inventory and risk classification of closed mine waste facilities of Hungary

(Version Nel)

MBFH-ELGI-MÁFI cooperation (10/2012)

Consigner: Hungarian Office for Mining and Geology Authors: János Kiss Győző Jordán

Co-author:

Gergely Detzky, László Vértesy, Tamás Müller, István Zsámbok, György Paszera, Ágnes Gulyás, Gabriella Öri, Károly Rádi, Viktor Hermann, Csaba Jerabek, Ahmed Abdaal, Júliánna Albert

The English translation was made on the basis of the Hungarian version as of 30/04/2012

30 April 2012, Budapest, Hungary

The fulfilment of Directive 2008/21/EC on the management of waste and Directive 2004/35/EC prescribes the registration of closed mining waste facilities.

Figure 2 Internet presentation of pre-selection and selection results by means of maps google.com KML format (April 2012)

2.3. Internet representation of the results

The internet representation of the results is realized with the KMZ/KML file format that can be visualized with the Mozilla, Internet Explorer or other browsers and with the "maps.google.com" website. The following link is used:

http://maps.google.com/maps?q=http://econym.org.uk/gmap/example1.kml,

where the "example1 kml" is the file for representation.

Another possibility is the application of a GIS server like the MBFH server where the developed GIS system can be accessible for external users. The official MBFH permission for this has been released and it is under development at the present.

3. Results

The basic database for the inventory of closed mining waste facilities, developed from the various databases of landscape wounds, the mines databases and the waste heaps and tailing ponds database, contains 16 451 records. Only a small fraction of this, about 1 689 facilities are known as closed mine waste facilities, i.e. waste heaps and tailings ponds. The risk assessment and ranking of these facilities had to be carried out. The work proceeded from the hazardous facilities towards the less hazardous facilities. Out of the 1 689 mine waste facilities, 463 facilities can be regarded as potentially harmful according to the assumed non-inert or toxic material content at the date of the Internet publication on 01 May 2012. Field verification including the measurement of the exact geographical location has been accomplished for these facilities.

SCIENTIFIC RESEARCH

GEOCHEMISTRY, MODELLING, DECISIONS Research Group

1. EU TECHNICAL ASSISTANCE IN TURKEY PROJECT risk-based inventory for the Mine Waste Directive

4. MOROCCO-HUNGARY BILATERAL PROJECT climate zones: mine contamination mobility

Q11

Q12

Q13

Q14

Q15

Q16

Q17

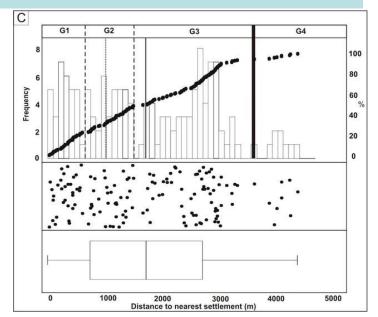
Pathway

Receptor

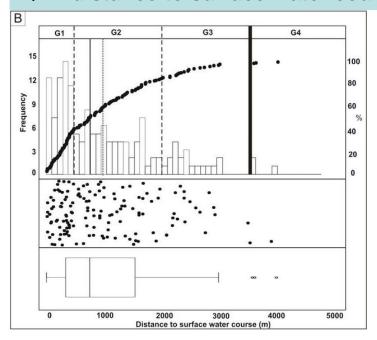
1. CONTAMINATION RISK ASSESSMENT (RA)

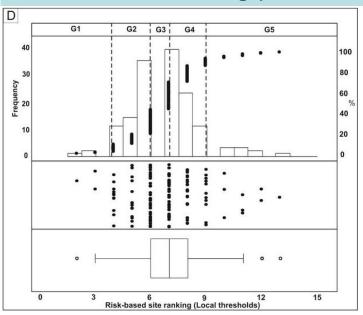
a decision support tool

							FACTO					
								Key parameters				
Table 3. Summary statistics of the Pre-selection Protocol responses of Q1-18, showing the number of YES, NO and UNKNOWN (U) responses in the EU and local thresholds (Median-based) and the percentage of certain to uncertain (U%) responses for each question.												
Pre-selection		Number	EU thresholds		Local thresholds (Median-based)			Local thresholds (Highest group) U		U%		
Proto	col	of Sites	YES	NO	YES	NO	YES	NO				
Impact	Q1	145	19	126	19	126	19	126	0	0		
	Q2	145	101	40	101	40	101	40	4	3		
	Q3	145	126	15	126	15	126	15	4	3		
Source	Q4	145	7	138	7	138	7	138	0	0		
	Q5	145	9	136	9	136	9	136	0	0		
	Q6	9	9	0	9	0	9	0	0	0	-	
	Q7	9	4	2	4	2	4	2	3	33		
	Q8	136	34	92	34	92	34	92	10	7		
	Q9	136	9	115	9	115	9	115	12	9		
	Q10	136	110	26	74	62	2	134	0	0		
	011	145	64	81	73	72	144	1	n	n		


RA methods

	EU Pre-selection Protocol	HRS, US EPA 1992	US AIMSS, Paineer, 1994	EU PRAMS, EEA 2005	HMS, Irish EPA 2009	Di Sante et al., 2009	Brandburst 2010	Fan et al., 2010	Turner et al., 2011	Wang et al., 2011	Rizzol et al., 2011	Ranking
	х.	Х	: X	X	Х		!	: X	X		X	8
	X :		X	Х	X		X	:	:	X	. ×	7
	Χ :	X	X		X		l .	:	:		. X	6
	Χ :		X		X			:				5
	:	^		-		X		X		X		5
	X		:	Х	Х			:	х	:		4
				Х	Х			:			X	3
	X							!				2
	X					i	X					2
_	Х					X						2
	X	Х	X	Х	X	· X			X	X	X	9
	X	Х	X		X	X		X			X	7
	X	Х	X		X			×			X	6
	Х		X	Х	Х	, X		Х				6
	×.		X	Х		i	i		. X		. X	6
	X		X		X							3
	Х			Х	Х		:					3
	Х			Х							X	3
	X			Х			:					2
4											X	1
	Х	Х	X	Х	Х	X	X	X			X	9
	Х	Х	X	Х	Х	Х				Х	X	8

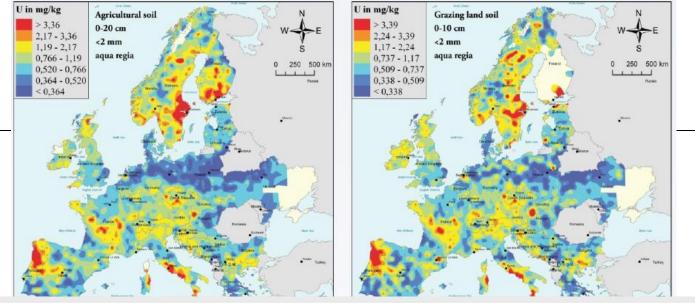

Q10: topographic slope


Q15: distance to settlement

Q11: distance to surface water course

Risk-based site ranking (local thresholds)

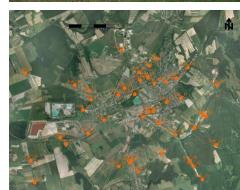
2. INERT MINING WASTE geochemical classification in Hungary

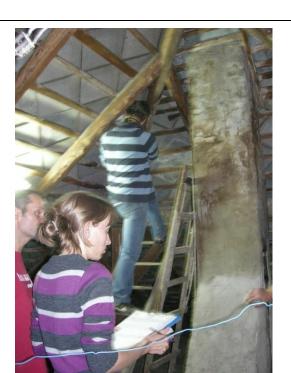


1. GEMAS PROJECT geochemical mapping of soils in Europe

2211 samples: agricultural soil, 2118 samples: grazing land soil (32 countries)

C. Reimann, P. Caritat, The GEMAS Project Team (*G. Jordan*), 2011. New soil composition data for Europe and Australia: demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. <u>Science of Total Environment</u> (in press)


4. URGE PROJECT urban geochemistry in Europe urban soil geochemical survey



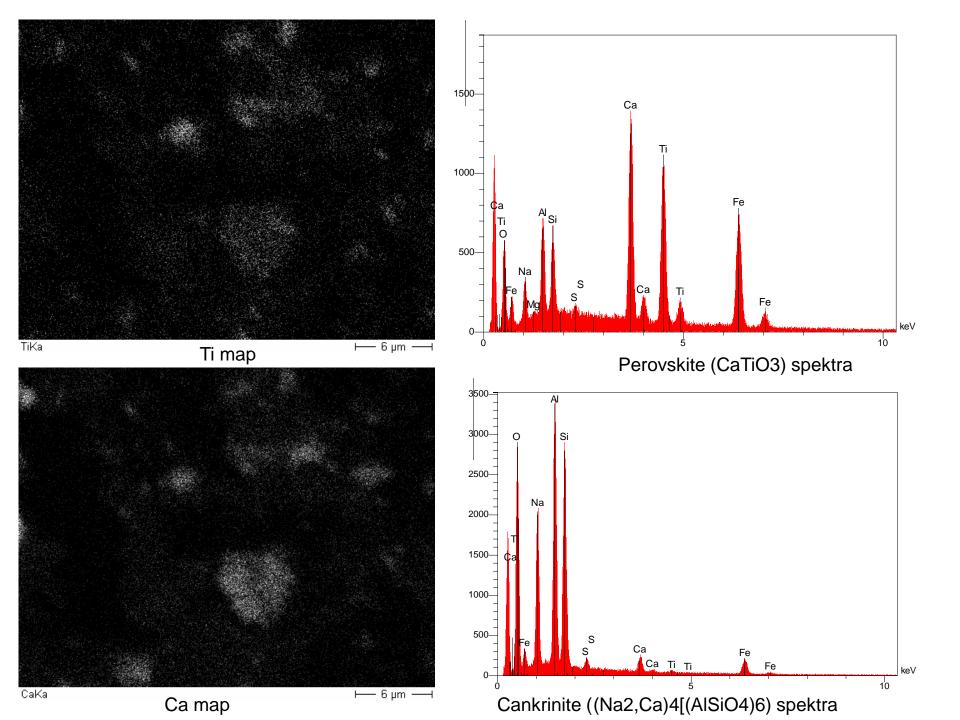
4. URGE PROJECT urban geochemistry in Europe attic dust geochemical survey

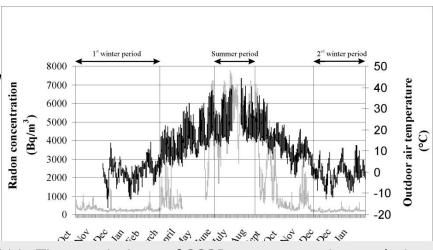
2. CONTAMINATION MOBILITY field & lab leaching tests

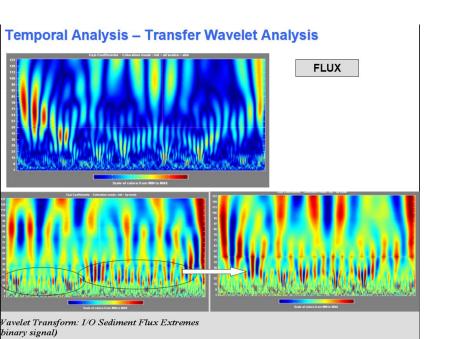
ANC, EPA 1310, EPA 1320, TCLP (EPA 1311), NAG and ABA tests for mine waste toxic element mobility assessment

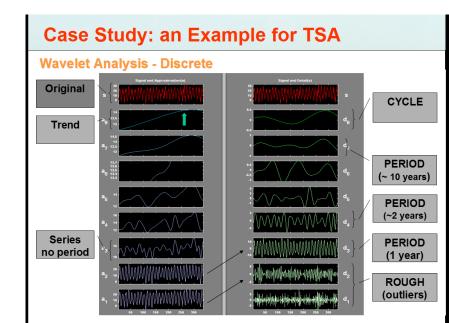
2. CONTAMINATION MOBILITY field & lab leaching tests

ANC, EPA 1310, EPA 1320, TCLP (EPA 1311), NAG and ABA tests for mine waste toxic element mobility assessment.




3. CONTAMINATION TRANSPORT transport & reaction modelling geochemical reaction modelling





7. TIME SERIES ANALYSIS environmental dynamics & prediction

H. Nagy, Z. Szabó, *G. Jordan*, C. Szabó, Á. Horváth, A. Kiss, 2011. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave. <u>Isotopes in Environmental & Health Studies</u> (in press)

4. CONTAMINATION DEPOSITION

human & ecosystems Human & Ecosystem health: <u>MEDICAL GEOLOGY</u>

4. CONTAMINATION DEPOSITION

human & ecosystems Ecosystem receptors: <u>FLOODPLAIN GEOCHEMISTRY</u>

9. CATASTROPHE RESPONSE RED MUD spill in Ajka 2010

MOBILE GIS TECH development and application

