

Environmental monitoring of mining in hyperspace

Ils Reusen, Stephanie Delalieux, Dries Raymaekers, Carolien Tote

Flemish Institute for Technological Research (VITO) Remote Sensing and Earth Observation Processes

Mol, Belgium

ils.reusen@vito.be

Outline

» Hypertemporal

» Orenburg-Karabash

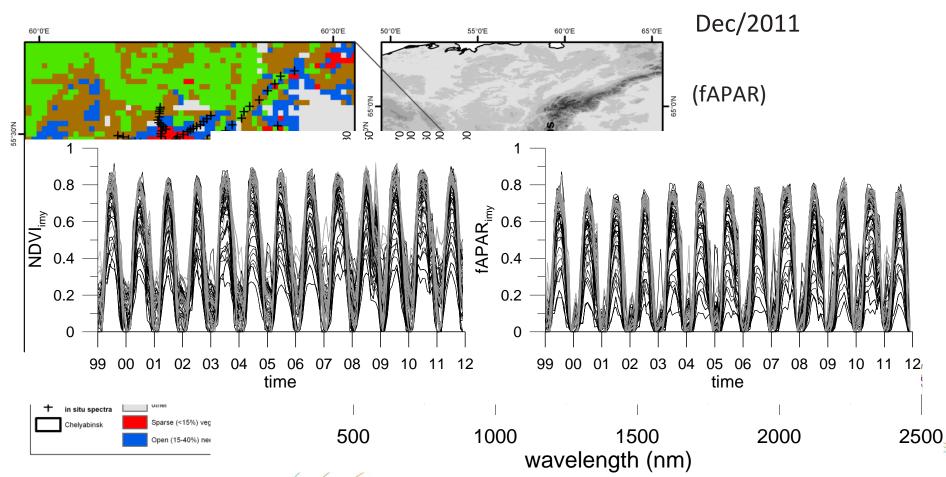
» Hyperspectral

- » Mostar
- » Rosia Montana

» Hyperspatial

» Mostar

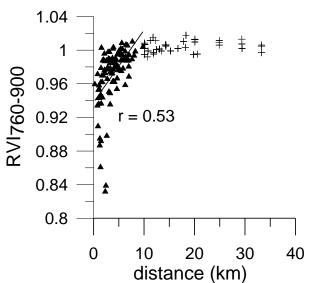
Hypertemporal: Time series analysis of SPOT-VEGETATION (Orenburg-Karabash)


- Tote, C., M. Goossens, B. Williamson, W. Purvis, D. Bellis, V. Udachin, E. Swinnen, and I. Reusen. 2012. "Vegetation stress due to mining impact in Karabash using TSA of SPOT-VGT." 1st EARSeL Workshop on Temporal Analysis of Satellite Images.
- » Tote, C., S. Delalieux, M. Goossens, B. Williamson, and E. Swinnen. submitted. "Monitoring environmental health using SPOT-Vegetation derived indices in Karabash, Russia." *International Journal of Remote Sensing.*

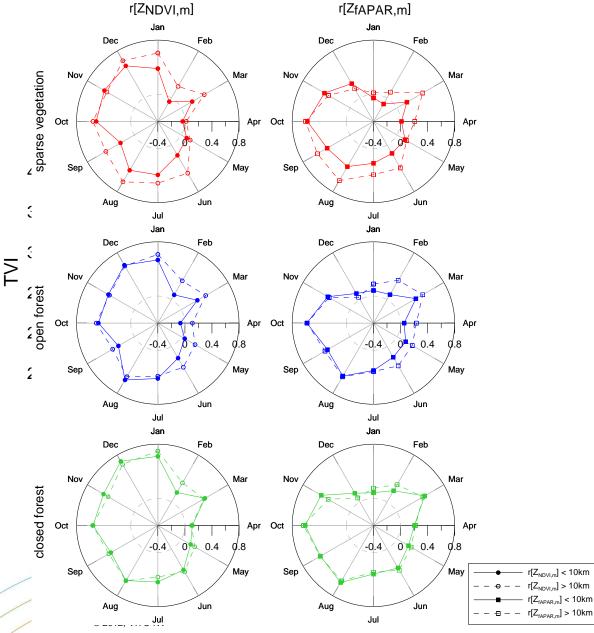
Study area: Karabash → large scale environmental impact from gaseous and particulate emissions from copper smelter

Data

- » Reference: GlobCover (Arino et al.2007)
- » In situ data: 140 Birch spectra (GEOSENSE)



Methods


» Spectral indices from in situ spectra

			Name	Abbrev.	Formula ^a	References
>>	Tin	ne series indice	Normalized green red difference index	NGRDI	$(R_g - R_r)/(R_g + R_r)$	Tucker (1979)
			I riangular greenness	TGI	$-0.5 \cdot [(\lambda_r - \lambda_b) \cdot (R_r - R_g) - (\lambda_r - \lambda_g) \cdot (R_r - R_b)]$	Hunt et al. (2011)
	>>	Mean values $\mu[l]$	wioumeu emorophyn	MCARI	$[(R_{700} - R_r) - 0.2 \cdot (R_{700} - R_g)] \cdot (R_{700} / R_r)$	Daughtry et al.
	>>>	Coefficients of v	absorption reflectance index			(2000)
	»	Z-scores Z _{NDVI} and	1 2	TCARI	$3 \cdot [(R_{700} - R_r) - 0.2 \cdot (R_{700} - R_g) \cdot (R_{700} / R_r)]$	Haboudane et al. (2002)
	>>	Trend analysis of	absorption reflectance index			
			Triangular chlorophyll index	TCI	$1.2 \cdot (R_{700} - R_g) - 1.5 \cdot (R_r - R_{550}) \cdot \sqrt{(R_{700}/R_r)}$	Haboudane et al. (2008)
>>	Col	rrelation analys	Soil adjusted vegetation index	SAVI	$(1+0.5)\cdot(R_n-R_r)/(R_n+R_r+0.5)$	Huete (1988)
	»	With distance f	Optimized soil adjusted vegetation index	OSAVI	$(1+0.16)\cdot(R_n-R_r)/(R_n+R_r+0.16)$	Rondeaux et al. (1996)
	»	Between spectr	Modified soil adjusted vegetation index	MSAVI	$0.5 \cdot \{2 \cdot R_n + 1 - \sqrt{[(2 \cdot R_n + 1)^2 - 8 \cdot (R_n - R_r)]}\}$	Qi et al. (1994)
			Normalized difference vegetation index	NDVI	$(R_n - R_r)/(R_n + R_r)$	Tucker (1979)
		uto	Triangular vegetation index	TVI	$0.5 \cdot [120 \cdot (R_n - R_g) - 200 \cdot (R_r - R_g)]$	Broge and Leblanc (2000)
		vision on technology	Ratio vegetation index R ₇₆₀ /R ₉₀₀	<i>RVI</i> ₇₆₀₋₉₀₀	R ₇₆₀ /R ₉₀₀	-

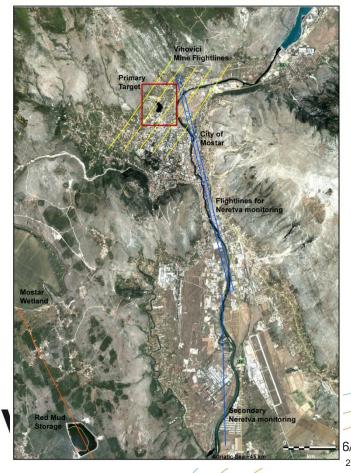
Relation with distance
 spectral indices

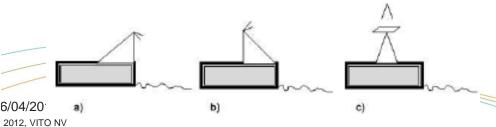
vision on technology

- » Both spectral indices, related to leaf pigments, internal leaf structure and thus plant health, derived from *in situ* birch reflectance spectra, and indices derived from SPOT-VEGETATION NDVI and fAPAR time series, have shown that the most affected area ranges up to 10 km distance from the smelter.
- » Correlation analyses between the spectral and time series indices have revealed that vegetation stress impedes a gradual increase of photosynthetic activity in close proximity of the smelter, which is observed at larger distances.

Hyperspectral: Water quality (Mostar)

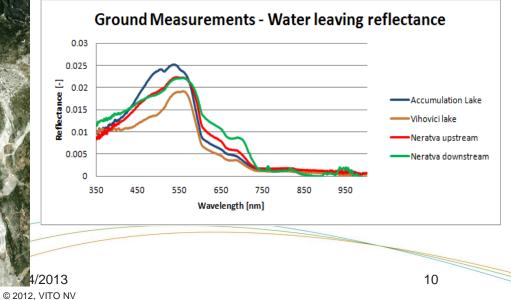
Vihovici Lake

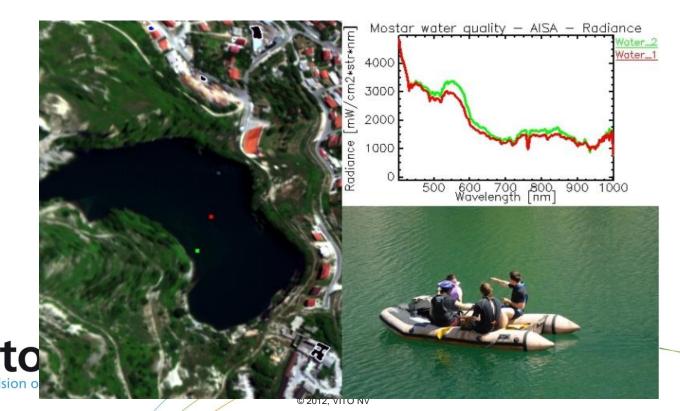

Neretva River


» Preparation

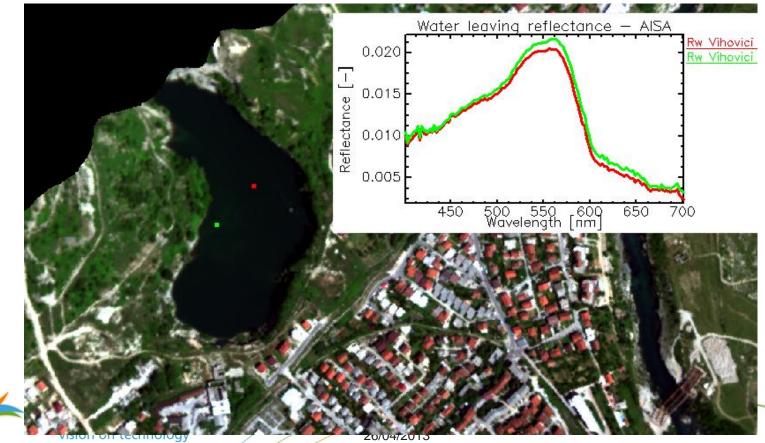
Flight campaign planning

Training on use of ASD field spectrometer for water leaving reflectance



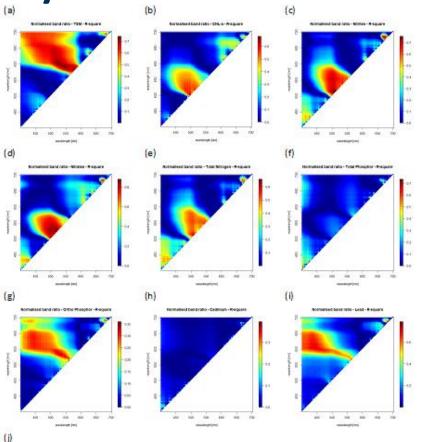

» Data: field data (Mostar university, Photon, GEOSENSE)

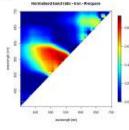
- » Water samples for water quality analysis
- » Water leaving reflectance
- » Spectral reflectance targets
- » GPS measurements


- » Data: hyperspectral airborne data
 - » Acquired on 19/05/2001 with AISA-EAGLE sensor
 - » 8 flightlines
 - » Example:

- » Methodology
 - » Airborne image preprocessing (ATCOR + vicarious calibration) (PHOTON)
 - » In-situ water spectra analysis (in-situ data vs lab data) (Mostar university)
 - » Airborne vs in-situ spectral analysis (AISA EAGLE vs ASD)
 - » Airborne water quality analysis (AISA EAGLE vs lab)

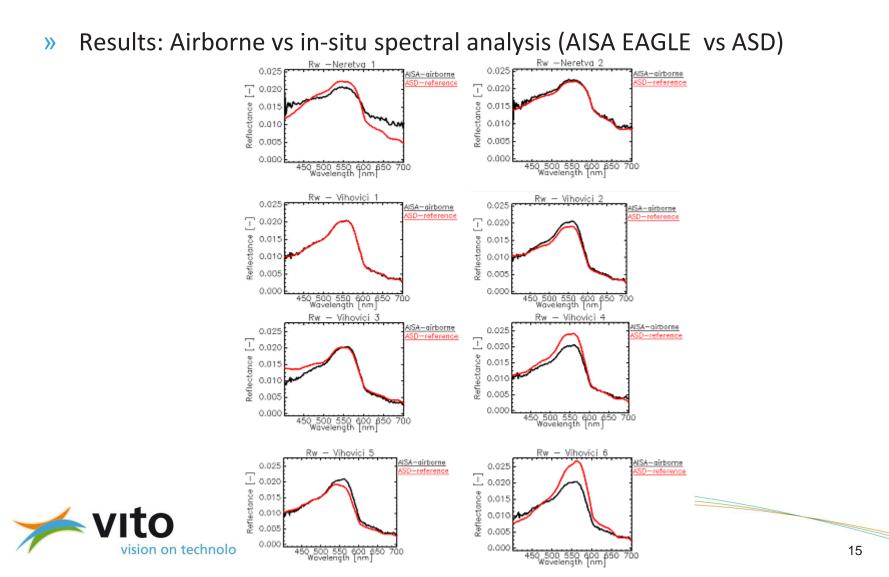
- » Results
 - » Airborne image preprocessing with ATCOR and vicarious calibration

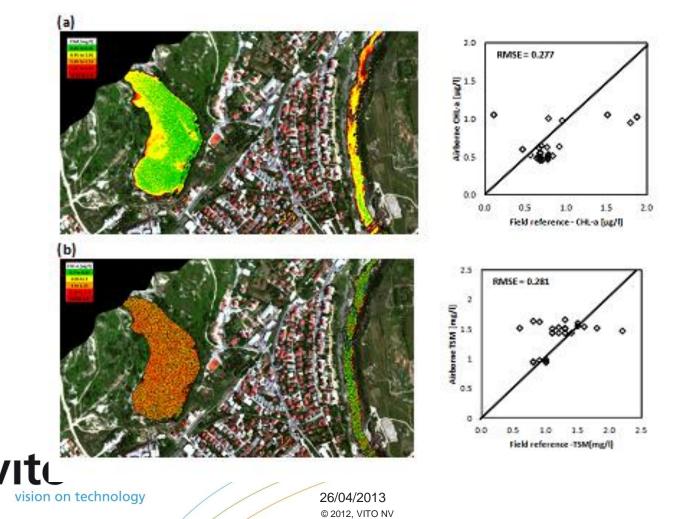

» Results


» In-situ water spectra analysis

Relationship between the Rw spectra and the different water quality parameters: **Band ratio analysis**

$$WQP_i = I_i + S_i * \frac{b\mathbf{1}_i - b\mathbf{2}_i}{b\mathbf{1}_i + b\mathbf{2}_i}$$


TSM: 550 and 600nm CHL-a: 480-575nm and 675nm => correlated with Nitrates and TotalN Lead and Iron: 425nm and 550nm Phosphor and Cadmium: poor correlations

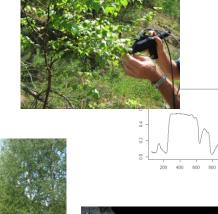


Band ratio significance plot: R² of the linear regression between the band ratio and TSM(a), CHL-a (b), Nitrites (c), Nitrates (d), Total Nitrogen (e), Total Phosphor (f), Orthophosfor (g), Cadmium (h), Lead (i) and Iron(j).

» Results: Airborne water quality analysis (AISA EAGLE vs lab)

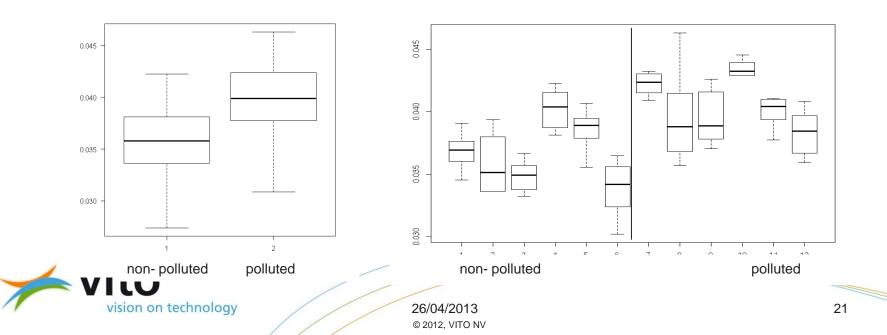
- » Results
 - » The Rw spectra measured during the Mostar field campaign are related to the concentration values
 - » Notable influence of the TSM concentration in the spectra
 - » No notable influence of CHL concentration in spectra
 - » The measurements taken at the Neretva river were effected by the bottom reflectance

Hyperspectral: Vegetation stress (Rosia Montana)

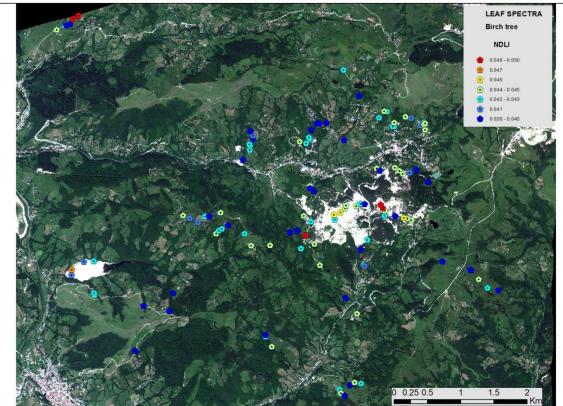

» Study area : Rosia Montana

Data

- » In-situ data
 - » Leaf spectral samples (full spectral range 350-2500 nm) (UBB, GEOSENSE, VITO)
 - Destructive leaf analyses (pigments, heavy metals)
 (UBB)
- » Airborne AISA Eagle dataset
 - » 64 bands ranging from 408-996 nm (VIS-NIR)
- » WorldView 2 images 2011 and 2012
 - » 8 spectral bands (VIS-NIR)

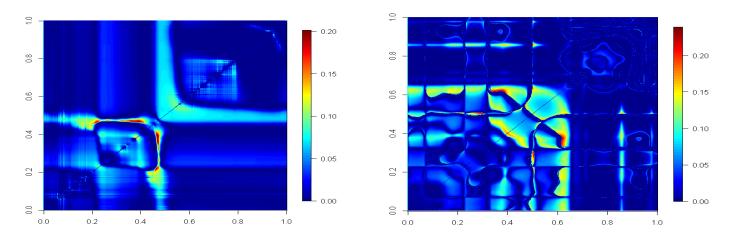


Methodology


- » Leaf spectral analysis (with focus on birches) via
 - » Decision tree classification
 - » Polluted vs non-polluted tree
 - » Vegetation indices
- » Airborne flight strip analysis (with focus on birches) via
 - » Extend the outcome of the leaf spectral analysis to the airborne analysis for an airborne estimation of polluted birch trees
 - » Vegetation indices
 - » Polluted vs. remote areas
- » WV 2 analysis via
 - » Vegetation indices
 - » Trees vs shrubs and grassland
 - » Differentiation of different tree species
 - Polluted vs non-polluted trees

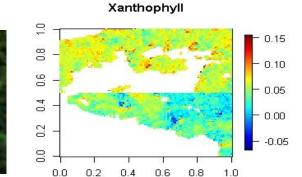
vision on technology

- » Normalized Difference Lignin Index performs well in estimating the degree of pollution in birch leaves
 - » NDLI = $[\log (1/R1754) \log (1/R1680)] / [\log (1/R1754) + \log (1/R1680)])$ Serrano et al., 2002
 - » Higher NDLI values indicate the presence of more lignin which is considered as a plant response to various environmental or stress factors



» Overall higher NDLI values can be observed for birch trees located near to or on the tailing dams

- » From a linear regression analysis, it was found that wavelength 647nm was slightly correlated with NDLI⇒ chlorophyll b!
- » R² values of regression analyses of standardized ratio indices containing VIS-NIR wavelengths vs. NDLI



If only VNIR bands are available, chlorophyll related indices should perform the best to detect mining impact on vegetation

» Chlorophyll indices to detect polluted trees in airborne dataset

- » Photochemical Reflectance Index PRI
- » Normalized Pigment Chlorophyll Ratio Index NPCI
- » Simple Ratio Pigment Index SRPI
- » Stress-Related index SR (695/420)

0.6

0.8

1.0

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

Pigments

1.0

0.8

0.6

0.4

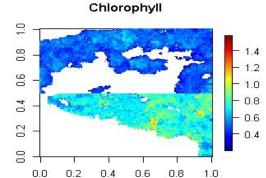
0.2

0.0

0.0

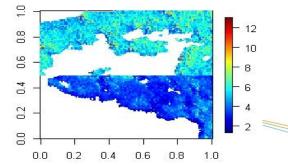

0.2

polluted


area

non-polluted

area



Stress

0.4

- » Chlorophyll indices to detect polluted trees in airborne dataset:
 - » Unexpected results of the
 - » Photochemical Reflectance Index PRI
 - » Normalized Pigment Chlorophyll Ratio Index NPCI
 - » Stress-Related index SR (695/420)
 - » Check with a subset of the leaf reflectance dataset revealed:
 - » Leaf reflectances in July confirmed findings from literature
 - » Leaf reflectances of August showed opposite effects
 - » Something to do with autumn leaf colouring which occurred earlier in polluted areas?
 - » Incentive for further research!

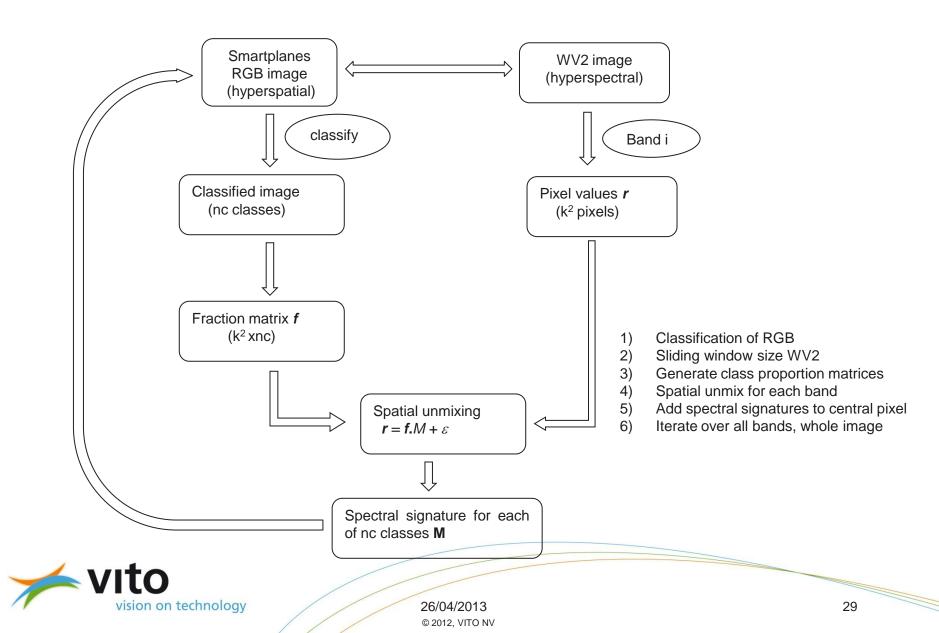


- » If SWIR bands are available: Normalized Difference Lignin Index (NDLI) performs well in estimating the degree of pollution in birch leaves
- » If only VNIR bands are available, chlorophyll related indices should perform the best to detect mining impact on vegetation

Hyperspatial: fusion WorldView-2 and Smartplanes UAS (Mostar)

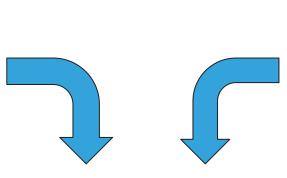
» Study area: Mostar

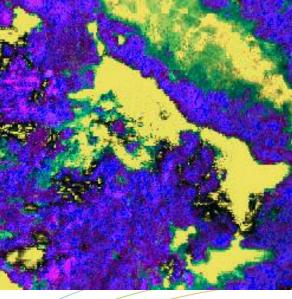
Data

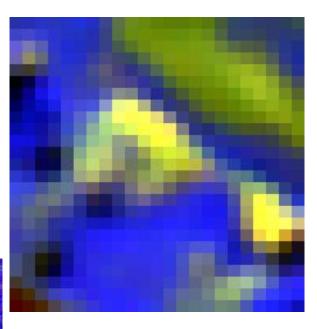

» Smartplanes

WorldView-2

Methodology: unmixing based fusion Zurita-Milla et al., 2008




Results : unmixing based fusion



Preprocessing :
Spatial resampling
0,05m → 0,2 m
equalize image quality
limit resolution gap

Result: 8 spectral bands 0,2 m spatial resolution