

GROUP ON

FARTH OBSERVATIONS

ská uhelná, právní nástupce, a.s

OKOLOV

www.eo-miners.eu

TEL AVIU UNIVERSITY

TOWARDS SUSTAINED AND ACCEPTED GEO-SPATIAL INFORMATION PRODUCTS FOR MINING AND RESOURCES MANAGEMENT

Christian FISCHER & EO-Miners Team

c.fischer@dlr.de

Wuppertal Institute

for Climate Environmen

ImpactMin international workshop Lulea, November 27, 2012

Test Sites

Czech Republic - Sokolov mining area:

- area is largely affected by lignite mining activities: open casts, closed mines and dump sites
- acid mine drainage (AMD) and related heavy metal contamination

South Africa - Witbank coalfields:

- major impact of mining due to land degradation and water pollution
- collapsed abandoned underground mine sites have undergone spontaneous combustion

Kyrgyzstan - Makmal gold deposit:

- necessity of a regular monitoring of soil and water on heavy metals content
- impact zone around a tailing dump

Developing Indicators

- A multi-pronged, iterative approach is used:
 - heuristic set of candidate indicators by expert elucidation
 - examination of site-specific conceptual models for the study sites
 - a semi-deliberative approach with input from outside stakeholders

- The resulting candidate set was tested during stakeholder interviews
- The indicators are checked for measurability by EO-experts
- The final set of indicators will be presented and are subject to stakeholder evaluation during workshops at the end of the project.

Remote Sensing Data

	RS Ima	age data	DE	EMs	EO & GIS	
test site	data set	Data type	Data set	Resolution	Data set	Data type
Sokolov	Hymap 2009	Hyperspectral VNIR -	Cartosat 2009	Resolution 5 m	ASD spectra	Spectral library
CZ	Hymap 2010	SWIR	Cartosat 2010	Resolution 5 m	TIR spectra	Spectral library
	AHS 2011	Hyperspectral TIR	Cartosat 2011	Resolution 5 m	Temperature measurements	
	orthopohoto mosaic	Aerial photographs	GEODIS	Resolution 10 m	Dust measurements	
	CASI	Hyperspectral VNIR	ASTER	Resolution 30 m	Geology	
	ALI	10 bands VNIR - SWIR			Land cover	Land cover 2006
	ASTER	15 bands VNIR – SWIR -			Topographic data	
		TIR				
Witbank	WorldView_II	8 bands VNIR	WorldView_II	Resolution 5 m	ASD spectra	Spectral library
ZA	Landsat TM series	7 bands VNIR - SWIR	SRTM	Resolution 90 m	TIR spectra	Spectral library
	SPOT	2.5 m color			Temperature measurements	
	FLIR survey	Airborne TIR			Dust measurements	
					GIS	
	AISA dual 2012	Hyperspectral VNIR -			ALERT	Real time electrical
		50011				tomography
Makmal	WorldView_II	8 bands VNIR	WorldView_II	Resolution 5 m	Geology	
KG	Landsat TM		SRTM	Resolution 90 m	Chemical analyses	
	SPOT	2.5 m color	ASTER	Resolution 30 m	ASD spectra	

Sokolov – Czech Republic

HyMap 2010, reflectance

AHS 2011, emissivity

Standardized pre-processing of Reference Measurements

preprocessing & validation of VIS-SWIR

Mineral Mapping (VIS-SWIR)

flooded lignite mine

Mineral Mapping (VIS-SWIR)

Jarosite+lignit

surface pH model

Mineral Mapping (TIR)

flooded lignite mine blue : clay; yellow : quartz

Forest Health Monitoring

Habartov, Mezihorská and

Studenec (bellow).

Health status classes for the trees without visual damage symptoms 1 - the worst and 5 - the best result

Temporal Changes in Forest Health

08/HyMap 2010

C_{ab} - Mezihorská (2010)

eMalahleni – Mpumalanga Province

eMalahleni (Witbank) – South Africa

Abandoned and active mine sites in close neighborhood of urban settlements:

- unpredictable surface movements
- spontaneous coal fires and acid mine drainage (AMD)

Street Dust Sampling

Street Dust Analysis

Spatial Distribution of Contamination

Human Footprint - TerraSAR-X

urban settlements

Mineral Mapping

Mineral Mapping

Coal Fire related Temperature Anomalies

Thermal night time Survey using a Matrix Detector: FLIR P640 640 x 480 Pixels, [-40 – 500°C] 16 bit quantification, +/- 0.03 °C sensitivity 7.5 to 13 μm spectral range, GSD ~ 2m

Abandoned Mine Sites and Coal Fires

Kazarman – Kyrgyzstan

Surface and ground-water affected by cyanide contamination ? Radioactive contamination?

WorldView-II images draped over WorldView-II DEM

Kazarman – Kyrgyzstan

Existing tailing pond: Investigation to secure ground-water resources:

- Modeling of potential surface and subsurface flow directions
- taking dust samples and
- spectradiometric measurements of the tailings and from soils on different locations

Drainage Network

EO product development

Environmental issues	Causes	Indicators	Measureable parameters	Potential for EO assessment of parameters	EO data availability for parameters	Task / status	Comments	Investigating institute	g
Water quality	AMD	Water Quality: E4 Acid drainage generation potential (distribution of sulphidic iron minerals)	Distribution of secondary iron oxide minerals	YES – Hyperspectral airborne data, ASTER or Hyperion satellite	Airborne hyperspectral available for '09,'10 and '11 (although cloudy), Landsat, AV/NIR-2 and	Selected AMD- related minerals can be mapped	Selected AMD-related minerals can be mapped. Map scale?	DLR and TAU and BGS	J
					some ASTER imagery				
			Surface drainage map	YES – SRTM, LiDAR or elevation derived from stereo airborne photography or satellite imagery such as ASTER	5 m DEMs derived from Cartosat stereo images (although not validated) and some ASTER imagery	Raw DEM exists	Ideally a hydrologically correct DEM is needed (calculation: ArcGIS), dGPS data required	Czech Geological Survey, BGS	
			Groundwater table and flow directions	YES – ground network required unless regional scale when GRACE satellite data could be utilised. ALERT	No suitable data available yet(?)	topographic information exists	Difficult to model - Is there a ground water model available?	?	

Quality assessment & Current Developments

eo

miners

Standards & Protocols

Standards

- are a pre-requisite for quantitative analysis and have to be traceable to (inter)national calibration standards, e.g. ISO TC 2011 or DIN/EN
- simplify the processing chain and data exchange
- allow maintenance, evolution and checks of results

Accomplished

- standardized preprocessing of reflective & thermal imagery
- homogeneous database of reference measurements following agreed standards and protocols
- data harmonization with & extension of existing quality indicators/ quality layers
- in-line with current standardization activities, e.g. EUFAR, CEOS
- **Ongoing Activities**
 - improvement of processing work-flow & product development
 - definition of data products, including meta-information, to support multi-sensor applications and combination with auxiliary data sets

- EO-based tools for updating geo-spatial information in mining regions, for monitoring mining related changes – and possible impacts – contributing to more sustainable extraction of natural resources
- EO techniques should be used to improve existing and often only selective approaches recording of environmental impacts. An important aspect is the development of validated data products and their acceptance by industry and supervisory authorities (standards & protocols)
- Addressing GEO (Group on Earth Observation) and GEOSS (Global Earth Observation System of Systems) process and tasks, by using project out-puts to define core elements of an environmental observing system and examining how this system fits in GEO and contributes to building GEOSS

