Airborne laser scanning of Sweden

Andreas Rönnberg Lantmäteriet, the Swedish mapping authority

Background

- Directive 2007/60/EC on flood risks
- Government investigation on adaption to climate change (SOU 2007:60)
 - Lantmäteriet should get resources to create a new national elevation model with higher resolution and accuracy. Data should be freely available to municipalities and agencies.
- Laser scanning started in 2009
 - About 70% covered so far

Old terrain model ...

New terrain model

Why laser scanning (LiDAR)?

- Airborne laser scanning
 - Suitable for forested landscapes
 - Very high accuracy
 - Many valuable bi-products
- Alternatives are e.g. photogrammetry and synthetic aperture radar (InSAR or IfSAR)

Laser will normally penetrate vegetation

Laser scanning principles

- Range from time between emitted laser pulse and recieved echo
- Laser pulses spread across flight direction by mirror (about ± 20°)
- Position from GNSS and INS

Multiple echoes

- Footprint of laser about 0.5 meter in diameter
- From one pulse, many echoes can be registered

Figure: Karin Nordkvist/Creative Commons Attribution-ShareAlike 2.5

Some limiting factors

- Point spacing up to 1.4 meters in average in open terrain
 - Sufficient for general terrain model
 - Higher point density encouraged for mapping of objects like trees and buildings
- Waveform data is not collected

Project management

- Contractor
 - Mission planning
 - Data capture
 - Pre-processing and basic QC
- Lantmäteriet
 - Extensive QC
 - Classification/filtering
 - Secrecy check (for national security)
 - Products and metadata

Hardware

- Leica ALS50-II, ALS60, ALS70
- Optech ALTM Gemini

Flying weather

- Priority and weather determines what will be scanned
- Daylight is not necessary, but ...
 - Laser pulses will not penetrate clouds and thick fog
 - High water levels will hide ground

Ground classification

- Will never be flawless
 - Automatic methods will not handle all situations
 - Manual methods need decisions by operator
- Over/under classification
 - Too many or too few objects classified as ground

Classification problems

- Low points (noise)
- Dense, low vegetation (bushes)
- Steep terrain, with abrupt changes
- Buildings (large, unusual forms), bridges, dams ...
- Water

Production in two steps

- Step 1
 - Automated ground classification with some manual editing
 - Fast coverage and data access
- Step 2
 - Refined classification with more extensive manual editing
 - Bridges and dams
- Updating is still uncertain

Terrain influence

- Detail of terrain model generally lower in forest areas
 - Dense vegetation will block laser
- Lower vertical accuracy in steep terrain
 - Footprint stretched
 - Influence from lower horizontal accuracy

Accuracy of final terrain model

- Affected by
 - · Geometric accuracy of laser data
 - Accuracy in ground classification
 - Grid interpolation
- Result
 - Vertical accuracy 0.05 m on flat, well defined ground. Nomally better than 0.2 m in most terrain types.
 - Horizontal accuracy about 0.25 m

Error distribution

Error distribution

Grid (DTM)

- Primary product
- 2 meter GSD
- Will fulfill most user's needs
- Simple data format
 - ESRI ASCII Grid

Laser data

- Classified into ground, water and unclassified points
- For advanced users
- Complex data format
 - LAS 1.2 (point data record format 1)
- Huge potential for further processing

Some applications

Flood mapping

- Estimation of hazards
- Terrain model completed with
 - Bottom topography (usually by sonar)
 - Bridge and dam descriptions
 - Flow estimation
 - Roughness estimation (Manning's coefficient)
 - Observed flow and water levels (for model calibration)

Terrain stability mapping

- Estimation of landslide hazards
- Analysis of
 - Slope
 - Soil type
 - Proximity to possible flood hazards

Lantmäteriet's website

Lantmäteriet i Strömstad söker MBK-ingenjör 2012-10-04

MBK-ingenjör 2012-10-04

GeoLex

Startsida Kartor Fastigheter Om I	Lantmäteriet	[Sök
Du är här: Startsida Kartor Kartor och geogra	fisk information GeoLex		Kontakta oss	<u>Återförsäljare</u>
GEOGLESS BILD OCH HÖJD Flygfoto GSD-Ortofoto Historiska ortofoton Satellitbilder Höjdinformation Ny nationell höjdmodell Kiart i Bages Produktionsområden 2009 - 2013 Skanningstatus Leverantörens veckorapport GSD-Höjddata FASTIGHETSINFORMATION GEODESI GEOGRAFISKA DATABASER KARTOR PDF-BIBLIOTEK till RT 90-versionen	Index10km: 702 11	Sök Ortnamn Kommun: Navigera i kartan Navigera i kartan Navigera i kartan Valueration Karti lager Ny nationell höjdmoder Klart i lager Klassificeringsnivå 1 Klassificeringsnivå 2	 O SÖK O VISA 	
	GeoLex Hjälp	Läs mer		
	Skicka synpunkter och frågor till: GeoLex@lm.se			

